Knots, Fibrations and Physics

Knotted DNA

Knots!

Knotted Fluid **Vortex**

Knotted Liquid **Crystal**

Nematic Liquid Crystals

-
-
-
-
-
-

Nematic Liquid Crystals

-
-
-
-
-
- -

-
- -
- -

So whats the problem?

-
-
-
- -

So whats the problem?

So whats the problem?

So whats the plan?

-
-
-
-
-
-

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^{n+1} \to \mathbb{C}$. If S_{ϵ} is a sufficiently small $(2n + 1)$ -dimensional sphere entered at z^0 . Let $K = V \cap \overline{S_{\epsilon}}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi z = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle. Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \setminus (V \cap S_{\epsilon})$ is a smooth parallelisable 2ndimensional manifold.

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^2 \to \mathbb{C}$. If S_{ϵ} is a sufficiently small 3-dimensional sphere entered at z^0 . Let $K = V \cap S_{\epsilon}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi(z) = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle. Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \backslash (V \cap S_{\epsilon})$ is a smooth parallelisable 2-dimensional manifold.

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^2 \to \mathbb{C}$. If S_{ϵ} is a sufficiently small 3-dimensional sphere entered at z^0 . Let $K = V \cap S_{\epsilon}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi(z) = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle.

Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \backslash (V \cap S_{\epsilon})$ is a smooth parallelisable 2-dimensional manifold.

$$
V = \{(z_1, z_2) \in \mathbb{C}^2 | f(z_1, z_2) = 0\}
$$

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^2 \to \mathbb{C}$. If S_{ϵ} is a sufficiently small 3-dimensional sphere entered at z^0 . Let $K = V \cap S_{\epsilon}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi(z) = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle.

Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \backslash (V \cap S_{\epsilon})$ is a smooth parallelisable 2-dimensional manifold.

$$
V = \{(z_1, z_2) \in \mathbb{C}^2 | f(z_1, z_2) = 0 \}
$$

$$
S_{\epsilon} = \{(z_1, z_2) \in \mathbb{C}^2 | (z_1 - z_1^0)^2 + (z_2 - z_2^0)^2 = \epsilon \}
$$

The "cone over K", just means we take the union of the line segments:

 $tk + (1 - t)z_0$ $0 \le t \le 1$

that join the points $k \in K$ to the base point z_0 .

The "cone over K", just means we take the union of the line segments:

 $tk + (1 - t)z_0$ $0 \le t \le 1$

that join the points $k \in K$ to the base point z_0 .

Lemma. Every sufficiently small sphere S_{ϵ} entered at z_0 intersects V in a *smooth manifold.*

The "cone over K", just means we take the union of the line segments:

 $tk + (1 - t)z_0$ $0 \le t \le 1$

that join the points $k \in K$ to the base point z_0 .

Lemma. Every sufficiently small sphere S_{ϵ} entered at z_0 intersects V in a *smooth manifold.*

So $K = V \cap S_{\epsilon}$ is a smooth manifold

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^2 \to \mathbb{C}$. If S_{ϵ} is a sufficiently small 3-dimensional sphere entered at z^0 . Let $K = V \cap S_{\epsilon}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi(z) = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle. Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \backslash (V \cap S_{\epsilon})$ is a smooth parallelisable 2-dimensional manifold.

Fibre Bundles

A *smooth fibre bundle* is a structure (E, B, π, F) , where E, B, F are smooth manifolds and $\pi : E \to B$ is a smooth surjection such that:

For every $x \in E$, there is an open neighbourhood $U \subset B$ of $\pi(x)$ such that there is a diffeomorphism $\varphi : \pi^{-1}(U) \to U \times F$ in a way that π agrees with the projection onto the first factor.

This last part can be summarised by saying the following diagram commutes.

If z^0 is any point of a complex hypersurface, $V = f^{-1}(0)$, where f is a polynomial, $f: \mathbb{C}^2 \to \mathbb{C}$. If S_{ϵ} is a sufficiently small sphere entered at z^0 . Let $K = V \cap S_{\epsilon}$ then the mapping,

$$
\phi : S_{\epsilon} \setminus K \to S^1 \qquad \phi(z) = \frac{f(z)}{\|f(z)\|}
$$

is the projection of a smooth fibre bundle. Each fibre, $F_{\theta} = \phi^{-1}(e^{i\theta}) \subset S_{\epsilon} \setminus (V \cap S_{\epsilon})$ is a smooth parallelisable 2-dimensional manifold.

 $(S_{\epsilon} \setminus K, S^1, \phi, F)$, is a fibre bundle, with fibres $F_{\theta} = \phi^{-1}(e^{i\theta})$

-
-
-
-
-
-

Identify \mathbb{C}^2 with \mathbb{R}^4 : $\Phi(x, y, z, t) = (x + iy, z + it)$

Identify \mathbb{C}^2 with \mathbb{R}^4 : $\Phi(x, y, z, t) = (x + iy, z + it)$

$$
\Sigma: S^3 \setminus \{0, 0, 0, 1\} \to R^3
$$

$$
\Sigma(x, y, z, t) = (\frac{x}{1 - t}, \frac{y}{1 - t}, \frac{z}{1 - t})
$$

Identify \mathbb{C}^2 with \mathbb{R}^4 : $\Phi(x, y, z, t) = (x + iy, z + it)$

$$
\Sigma: S^3 \setminus \{0, 0, 0, 1\} \to R^3
$$

$$
\Sigma(x, y, z, t) = (\frac{x}{1 - t}, \frac{y}{1 - t}, \frac{z}{1 - t})
$$

 $\Sigma \circ \Phi^{-1}$ | : $S^3 \setminus \{0, i\} \to R^3$

Theorem. If z_0 is an isolated critical point of f, then each fibre F_{θ} can be *considered as the interior of a smooth manifold-with-boundary such that:*

 $Closure(F_{\theta}) = F_{\theta} \cup K$

Theorem. If z_0 is an isolated critical point of f, then each fibre F_{θ} can be *considered as the interior of a smooth manifold-with-boundary such that:*

 $Closure(F_{\theta}) = F_{\theta} \cup K$

Knot Theory

-
-
-
-
-
-
- -

Knot Theory

Knot Theory

Unknot (0)

 $Trefoil (3₁)$ Figure 8 $(4₁)$

Knot Theory

Algebraic Knot Theory

-
-
-
- -
	-
-
-

Algebraic Knot Theory

$f: \mathbb{C}^2 \to C$

Algebraic Knot Theory

$\frac{\partial f}{\partial z_1} = \frac{\partial f}{\partial z_2} = 0 \,\, \text{at} \,\, (0,0)$ $f(0,0) = 0$

 $\overline{f:\mathbb{C}^2\to C}$

Algebraic Knot Theory $f: \mathbb{C}^2 \to C$

 $f(0,0) = 0$ ∂z_1 = ∂f ∂z_2 = 0 at (0*,* 0)

 $V(f) = \{(z_1, z_2) \in \mathbb{C}^2 | f(z_1, z_2) = 0\}$

Algebraic Knot Theory $f: \mathbb{C}^2 \to C$

- $f(0,0) = 0$ ∂z_1 = ∂f ∂z_2 = 0 at (0*,* 0)
	- $V(f) = \{(z_1, z_2) \in \mathbb{C}^2 | f(z_1, z_2) = 0\}$

 $\sum \circ \Phi^{-1}(V(f)) =$ Knot

Braids Trefoil Figure-8 Solomon Seal 5 2 6 1

Torus Knots

 $f(u, v) = u^p - v^q$

From Knots to Braids to Polynomials $\overline{\left| \cos(2\pi 2t) \right|}$ $\sin(2\pi 4t)$

From Knots to Braids to Polynomials $cos(2\pi 2t)$ $\sqrt{\sin(2\pi 4t)}$

 $\overline{U(t)} = \cos(2\pi 2t) + i \sin(2\pi 4t)$

From Knots to Braids to Polynomials $\sqrt{}\cos(2\pi 2t)$ $\sin(2\pi 4t)$ $U(t) = \cos(2\pi 2t) + i \sin(2\pi 4t)$

 $U(t) = \frac{1}{2}(v^2 + v^{-2} + v^4 - v^{-4})$ with $v = \exp(2\pi i t)$

From Knots to Braids to Polynomials $\sqrt{\cos(2\pi 2t)}$ $\sin(2\pi 4t)$ $U(t) = \cos(2\pi 2t) + i \sin(2\pi 4t)$

 $U(t) = \frac{1}{2}(v^2 + v^{-2} + v^4 - v^{-4})$ with $v = \exp(2\pi i t)$ $u_1(t) = U(\frac{t}{3}); \quad u_2(t) = U(\frac{t+1}{3}); \quad u_3(t) = U(\frac{t+2}{3})$

From Knots to Braids to Polynomials $\sqrt{\cos(2\pi 2t)}$ $\sqrt{\sin(2\pi 4t)}$ $U(t) = \cos(2\pi 2t) + i \sin(2\pi 4t)$ $U(t) = \frac{1}{2}(v^2 + v^{-2} + v^4 - v^{-4})$ with $v = \exp(2\pi i t)$ $u_1(t) = U(\frac{t}{3}); \quad u_2(t) = U(\frac{t+1}{3}); \quad u_3(t) = U(\frac{t+2}{3})$ $p(u,v) = \prod$ 3 *i*=1 $(u - u_i(t))$

Is this what we want?

-
-
-
-
-
-
- -

Is this what we want? $f(u, v) = u^2 - v^3$

Is this what we want? $f(u, v) = u^2 - v^3$

$$
f(u,v) = \frac{3}{4}u(v^*)^2 + \frac{(v^*)^4}{8} - \frac{(v^*)^2}{2} + u^3 - \frac{3uv^2}{4} - \frac{v^4}{8} - \frac{v^2}{2}
$$

Figure 8

$$
f(u,v) = \frac{3}{4}u(v^*)^2 + \frac{(v^*)^4}{8} - \frac{(v^*)^2}{2} + u^3 - \frac{3uv^2}{4} - \frac{v^4}{8} - \frac{v^2}{2}
$$

Figure 8

$$
f(u, v) = \frac{3}{4}u(v^*)^2 + \frac{(v^*)^4}{8} - \frac{(v^*)^2}{2} + u^3 - \frac{3uv^2}{4} - \frac{v^4}{8} - \frac{v^2}{2}
$$

Miller Institute Knot

Miller Institute Knot

Miller Institute Knot

 $f(u, v) = 432 - 48u + u^3 - 1350v + 192uv - 9u^2v + 386v^2 - 45uv^2 - 2523v^3 +$ $237uv^3 + 1452v^4 - 120uv^4 + 19v^5 + 576v^6 - 512v^7 + 522v^* + 48uv^* - 9u^2v^* +$ $530(v*)^2 - 45u(v*)^2 - 939(v*)^3 - 147u(v*)^3 + 2604(v*)^4 + 120u(v*)^4 - 269(v*)^5 +$ $576(v^*)^6 + 512(v^*)^7$

Miller Institute Knot

Any questions?