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Abstract

In this thesis, a number of tools are developed to better understand fuzzy spaces

and finite noncommutative geometries in general. These tools depend only on the

spectrum of the Dirac operator. Dimensional measures based on Weyl’s law and heat

kernel asymptotics are defined. A new dimensional measured called the spectral

variance is defined as a modification of the spectral dimension to remove some of

its undesirable properties. Volume measures based upon the Dixmier trace and

the work of Stern are adapted to the finite setting and tested on the fuzzy spaces.

The distance between two geometries is investigated by comparing the spectral zeta

functions using the method of Cornelissen and Kontogeorgis. All of these tools

are then used to investigate the fuzzy sphere, the fuzzy tori and the random fuzzy

spaces introduced by Barrett and Glaser. The role of symmetry in the creation of

fuzzy spaces is investigated using the characterisation of the Dirac operator given

by Barrett. It is shown that all SU(2)-equivariant Dirac operators for type (0, 3)

and (1, 3) fuzzy spaces produce the round metric on the sphere, despite the Dirac

operators not agreeing with Grosse-Prešnadjer or Barrett operators. A pathway for

further research is presented along these lines.
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1
I N T R O D U C T I O N

Modern physics has many fundamental questions that require answering. Such

as explaining the existence of dark matter and dark energy, explaining the matter-

antimatter imbalance, why does spacetime have 3 spatial and 1 temporal directions?

However arguably the most sought after answer is to the question of how to describe

gravity quantum mechanically. The apparent incompatibility of gravity with that of

quantum field theory is famously difficult to resolve. Birthing ideas such as string

theory and loop quantum gravity as potential models, amongst others.

Gravity is best understood by Einstein’s theory of general relativity [1]. In which

the “force” of gravity is understood in a purely geometric manner - as the curvature

of spacetime. This theory has been subjected to the most penetrating of tests over

the last century or so and come out victorious every time. Recently the direct mea-

surement of gravitational waves is just another feather in general relativity’s cap [2].

The modern, mathematically rigorous, view of quantum field theory is described in

a quite contrasting manner. By a process of assigning noncommutative algebras - an

algebra of observables - to regions of spacetime [3, 4]. The best quantum field theory

of nature, known as the standard model of particle physics, is also very successful.

It describes the known fundamental building blocks of matter and their interactions

near perfectly. However, one of its limitations is that it only accounts for three of the

four known fundamental forces. It includes the strong and weak nuclear forces, and

electromagnetism but does not included gravity.
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introduction

Despite general relativity (GR) being a classical field theory akin to classical elec-

tromagnetism. Attempts to treat gravity as a quantum field theory fail to be useful.

When converting electromagnetism to a quantum field theory the process of renor-

malisation is required. This process can be loosely understood as measuring a finite

number of quantities to renormalise the theory with. For electromagnetism these are

the electron mass and charge as measured at a given energy scale. If one does not

undergo this process, the quantum theory of electromagnetism predicts infinite val-

ues for quantities known to be finite. However once sufficient renormalisation has

occurred the theory is highly accurate. Applying the same process to gravity would

require an infinite number of measurements to be made in order to renormalise the

theory. This is impossible to do in practice and in such situations a theory is called

non-renormalisable. Consequently, in situations where the energy scales are close

to the Planck scale (EP ∼ 1019GeV) the theory fails to be predictive and requires

us to consider new approaches. Note that for energies much lower than the Planck

scale, the quantum theory of general relativity can still be predictive and can provide

potential quantum corrections to the classical field theory results [5].

If a high-energy quantum theory (E > EP) of gravity is found, that reduces to

general relativity for low energies, it is called a UV completion. The UV completion

does have to be a quantum field theory and it may not be unique1. The search

for such a theory has produced many different potential quantum gravity models.

The most famous of these is string theory, which is an extension of quantum field

theory where the 0-dimensional point-like particles, are replaced by 1-dimensional

string-like objects. The different matter and force-carrying particles are formed by

the different vibrational modes of the fundamental string. Gravity is included in this

description as one of the vibrational modes is always the graviton - the hypothetical

particle that conveys the force of gravity. The cost of this approach is the inclusion

of six extra dimensions to the usual 4-dimensional spacetime [6].

1 The Schrödinger equation has both the Dirac equation and the Klein-Gordon equation as possible
UV completions.
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There are still many questions to be answered within string theory. The theory is

defined on a fixed background - called its vacuum state. This means that the theory

is not background independent, which is a core assumption of general relativity.

Also, the number of different consistent vacuum states of the theory is very large

due to the numerous ways to compactify the extra six dimensions. With the number

originally being estimated at 10500 [7] and with modern estimates of 10270,000 [8]. As

such, to make predictions with string theory requires arbitrarily picking a vacuum

and hoping it is the correct setup. This problem is called the landscape problem

of string theory, see [9] for a recent review. This amongst other issues such as the

necessary existence of supersymmetric particles, for which no evidence exists, has

lead to increased interest in other approaches.

Many of the other attempts to find a UV complete theory of quantum gravity, are

based around making spacetime have a discrete nature at the smallest scales. The

reason for this is to define a path integral over geometries that is free of divergences.

The path integral for GR is

Z =
∫

DgeiSEH [g], (1)

where SEH =
∫ c4

16πG (R − 2Λ)
√−gd4x is the Einstein-Hilbert action and Dg is an

integration measure on the space of all Lorentzian metrics. This integration mea-

sure is poorly defined and attempts to quantise this path integral lead to the non-

renormalisable quantum field theory mentioned above. Making spacetime discrete

yields two main benefits to this effect. The first is that the integral over all geome-

tries is often turned into a combinatorial problem, making the integral well defined.

The second is that in the quantum field theory of GR, the divergences occur from the

high energy aspects of the theory. A consequence of many discretisation procedures

is that there becomes a maximum allowed energy state. Such a maximum allowed

energy is called a UV cutoff and is usually taken to coincide with the Planck energy

EP.

Covariant loop quantum gravity (LQG) [10], causal dynamical triangulations (CDT)

[11, 12, 13] and causal set theory [14, 15] are all models that discretise spacetime,
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introduction

where different aspects of spacetime are treated as fundamental. In LQG the back-

ground independence of general relativity is made sacred, whereas in CDT and

causal sets the causal nature of events is the founding pillar.

LQG and CDT find their origin in Regge calculus [16]. Originally developed as

a tool for numerical relativity, Regge calculus builds a discrete version of spacetime

out of simplices. The curvature of the spacetime is calculated by the deficit angle

when gluing simplices together. A key component of Regge calculus is a discrete

version of the Einstein-Hilbert action. This allows one to define a path integral

over these discrete geometries. The edge lengths of the simplices are allowed to

vary in the full Regge action, leading to a complex action. Analytic calculations

are extremely difficult with this action however, numerical simulations of Euclidean

spaces have been conducted, for instance see [17, 18]. Note that because the edge

lengths are allowed to be any size, this does not incorporate any quantum features

into the theory. This is the starting point for the development of LQG and CDT.

CDT makes a simplification to the action by making all the edge lengths the same,

which greatly reduces the complexity. This automatically provides us with a so-

called atom of geometry and builds into the theory a fundamental smallest length

scale, called a Planck length. Lorentzian versions were developed in [12]. Upon

numerical exploration, three distinct phases of the theory were found, depending

on the values of different parameters in the action. One of these phases produces

geometries that undergo a dimensional reduction. They have a dimension of 4 at

low energies, and a dimension of 2 at high energies. This is notably different to the

scenario in string theory, where the extra dimensions are accessible at high-energies

and hidden at low-energies.

LQG describes gravity using spin-foams. Spin foams can be conceptually viewed

as the evolution of spin-networks, a discrete model of 3D Euclidean space. A spin-

network of 3-dimensional space is built from simplices, which are tetrahedra in this

dimension, like in Regge calculus. Each of the 6 edges of the tetrahedra are labelled

with a spin representation of SU(2), denoted ji where i labels each edge. These

representations can be viewed as labelling the lengths of each edge. The use of
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SU(2) representations implements a Planck length in this theory, due to the fact that

ji have to take half-integer values {1/2, 3/2, 5/2, . . . }. Also as the representations

are assigned to each edge, they are subject to conditions to make the tetrahedra close.

These closure conditions are distilled in the form of assigning a Wigner-6j symbol

to each tetrahedra. The area and volume of the tetrahedra are also quantised by this

procedure, see [10] for details. Applying this procedure to the entire triangulation

of a space produces as spin-network. Spin-foams can be defined independently of

spin-networks by implementing a similar procedure for a 4-simplex [19].

The action for the 3D Euclidean model is produced by integrating over all possi-

ble spin configurations of all the tetrahedra. It can be shown to produces the 3D

Einstein-Hilbert action in the semiclassical limit of j → ∞ [20, 21]. The situation

is much harder for the Lorentzian 4D case, and such a semiclasssial limit has not

been formally shown for spin foams. Despite this, the classical values for black-hole

entropy, Unruh temperature and Hawking radiation can be derived from the LQG

approach [22, 23, 24].

Causal set theory abstracts even further, building spacetime from partially ordered

sets. A random set of points is generated and a causal relationship between them

is defined using a certain type of partial order. A causal structure is only available

in Lorentzian signature so if causal sets are manifold discretisations, they are of

Lorentzian manifolds. The set of points can be sampled from a Lorentzian manifold

along with their causal relations to each other, or they can be randomly generated

and one could attempt to map these into a Lorentzian manifold, whilst preserving

the causal relations. There is a causal set analogue of the Einstein-Hilbert action

called the Benincasa-Dowker action [25], for which numerical simulations have been

investigated for low dimensions [26, 27, 28]. Evidence of manifold-like phases of the

theory were discovered. Also, a prediction for the cosmological constant is possible

that fluctuates around zero. See [15] for a review of recent causal sets.

Each of these approaches have a fundamental quanta of geometry, an atom of

spacetime. The quantum effects are due to the presence of such atoms. The dy-

namics of gravity is then how these atoms of spacetime interact. The dynamics is
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governed by a path integral over all allowed geometries. Where each geometry is

weighted by a factor of exp(iS), for some action S that recovers the Einstein-Hilbert

action of GR in some classical limit. The inclusion of the rest of physics in LQG,

CDT and causal sets is not obvious and a major area of research. As ideally, the

frameworks would also neatly explain the other aspects of nature, by either includ-

ing the standard model of particle physics or by another unknown process. If they

do not, then serious questions about the usefulness of such models are drawn into

question. How can gravity and matter interact if they are not expressed in the same

framework?

The approach of investigation in this thesis is via noncommutative geometry. Un-

derstanding quantum gravity from noncommutative geometry begins from a differ-

ent viewpoint than other theories. It begins by noticing that the transition from

classical mechanics to quantum mechanics is hinged on the idea of noncommutativ-

ity. Classical mechanics is understood in terms of differential geometry. The position

and momentum of particles are functions of the phasespace, as such they are com-

muting variables. You can know both quantities simultaneously at any instant of

the theory. The key revelation of early quantum mechanics was the introduction of

noncommuting position, x, and momentum, p, by Heisenberg, to explain the quan-

tisation of atomic spectra [29, 30, 31]. The position and momentum became infinite

matrices, formally called operators, that satisfy the relation: [x, p] = xp− px = ih̄.

A consequence of this noncommutativity is the Heisenberg uncertainty principle,

which states that the more accurately to you know the position, the less accurately

you know the momentum. The modern view of quantum mechanics is built from

these ideas, where the observable quantities of the universe, are expressed as Hermi-

tian operators. These operators need not commute, and if they do not commute then

there exists an uncertainty relation between them. Thus the observables in a quan-

tum theory form a non-commuting algebra. The starting point of noncommutative

geometry was to develop a common framework, on which the noncommutative al-

gebras of quantum mechanics, and the differential geometry of classical mechanics,

can be simultaneously expressed.
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The mathematical study of differential geometry and noncommutative algebras

has traditionally been distinct. However, there are various powerful correspon-

dences between geometric and algebraic objects that link them. The most famous is

that provided by Gelfand and Naimark (1943) [32] which allows us to pass between

a locally compact topological space to a commutative C∗ algebra.

compact Hausdorff topological space ←→ commutative unital C∗ algebras

The commutative C∗ algebra in the duality is non other than the space of continuous

functions over that topological space M, f : M → C, equipped with pointwise

multiplication and addition. Likewise any unital commutative C∗ algebra can be

viewed as the space of continuous functions over a compact Hausdorff space, C(M).

This provided a way to generalise the notion of a topological space in a manner

that was not possible before, by studying noncommutative C∗ algebras. The premise

is that noncommutative C∗ algebras can be treated as the algebra of functions on

a noncommutative topological space. Many of the usual topological properties can be

formulated in a purely algebraic manner. Such as compactness, which is provided

by making the algebras unital, and connectedness which is given by making the C∗

algebra projection-less.

The existence of this duality raises the question - what other geometric quanti-

ties can be translated into a purely algebraic way? It turns out that there are many

dualities between geometric constructions and algebraic constructions. Such as the

Serre-Swan theorem [33, 34]. Which states that vector bundles over a compact topo-

logical space M are equivalent to finitely generated projective modules over the

commutative C∗ algebras C(M). By studying finitely generated projective modules

over noncommutative C∗ algebras, you are in effect studying vector bundles over

noncommutative spaces. The general area of study of generalising geometric con-

structions to noncommutative algebra is broadly known as noncommutative geometry

(NCG).
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Noncommutative geometry is a fascinating field of study for both mathematicians

and theoretical physicists alike. For mathematicians it offers unexplored mathemat-

ics and a new viewpoint to tackle problems from. The realisation that all of topology

and differential geometry may in-fact be a very specific case of a much wider realm,

is the sort of realisation that produces leaps and bounds in understanding.

For physicists, the world of noncommutative geometry also offers a new view on

some of the most well tested theories of reality. Given that quantum field theory

is described in terms of noncommutative algebra, a natural question is whether one

can pass from the pseudo-Riemannian geometry description of general relativity to a

purely algebraic description using the tools of noncommutative geometry? In doing

so, is a single framework developed that describes both quantum field theory and

general relativity in a compatible way? This is the focus of a lot of current research

and there is a construction to pass between compact Riemannian spin manifolds to a

purely algebraic description which was recently formally shown to be a duality [35].

The fundamental ingredients of this duality is a spectral triple, (A,H, D), the de-

tails of which are outlined in section 2.2.1. For a compact Riemannian spin manifold

these consist of the algebra of smooth functions on the manifold M, A = C∞(M),

the Hilbert space of square integrable spinor sections, H = L2(S), which carries an

action of the algebra, and the Dirac operator D = /D.

The Dirac operator /D = −iγaeµ
a∇S

µ encodes the metric via the veilbeins eµ
a , which

satisfy the relation δabeµ
a eν

b = gµν. There are a number of different actions that are de-

fined in terms of veilbeins that produce to Einstein field equations as their equations

of motion. Such as the Palatini action [36], the Plebanski action [37] and the Holst

action [38]. Therefore it is plausible that in principal a path integral exists in terms

of the Dirac operators that has the same content as the GR path-integral eq. (1). The

spectral action [39] does precisely this. Defined as

S(D) = Tr( f (D/Ω)), (2)
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where f is a smooth approximation of a cutoff function that regularises the trace,

and Ω is an energy scaling factor that can be used in the renormalisation group

equations [40]. This action has the following asymptotic formula:

Tr( f [D/Ω])
Ω→∞∼

Einstein-Hilbert︷ ︸︸ ︷
f2Ω2 96

24π2

∫
R
√

gd4x +

Cosmological Constant︷ ︸︸ ︷
f4Ω4 48

π2

∫ √
gd4x

+
f0

10π2

∫
(

11
6

R∗R∗︸ ︷︷ ︸
Gauss-Bonnet

− 3CµνρσCµνρσ︸ ︷︷ ︸
Conformal gravity

)
√

gd4x, (3)

where fi =
∫ ∞

0 f (v)vi−1dv are the moments of the cutoff function. These moments

can be tuned along with Ω to select the Einstein-Hilbert action (or some modifica-

tions as shown in eq. (3)). For further details on how to use the spectral action and

noncommutative geometry in cosmology see [40].

One of the most surprising success of this approach of noncommutative geome-

try, is the description of the standard model of particle physics as a spectral triple,

that is minimally coupled to gravity and complete with neutrino-mixing [41, 42].

This model can be shown to produce a reasonable Higgs mass (with the original

model famously over shooting with a value of ∼ 170GeV) providing that all the

fields in the model are deemed necessary - specifically by treating a coupling con-

stant as a scalar field [43, 44]. These models are examples of almost-commutative real

spectral triples. Where the commutative real spectral triple for an ordinary spin

manifold, (C∞(M), L2(S), /D), equipped with a real structure2 is combined with a

finite-dimensional real noncommutative spectral triple which are defined later in

section 2.2.6. For the standard model the algebra is taken to be A = C⊕H⊕M3(C)

and the Hilbert space is taken to be H = C96. For the Hilbert space a copy of C

is taken for each left and right handed fermion and anti-fermion, accounting for

the three generations. The Dirac operator is then given by the Yukawa coupling

constants and the Majorana masses 3.

2 The concept of real structure is introduced in section 2.2. It can be viewed as a geometrical form of
charge conjugation.

3 There is also a real structure (defined later in section 2.2) that interchanges the respective particles
and anti-particles and there is a Z2-grading that distinguished the left and right handed particles.
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The motivation behind this thesis is then asking the question, what happens if the

commutative spectral triple of spacetime is replaced with one that is noncommuta-

tive? Would this amount to using noncommutative geometry to describe a theory

of quantum gravity? The program is to investigate the use of spectral triples to de-

scribe spacetimes that have a suitable notion of a Planck length, that is compatible

with the continuous symmetries of ordinary physics. This minimal length scale is

viewed as there existing a maximum energy scale available and not a restriction on

the measurements capable on the space. By limiting the highest energy, the diver-

gences in the non-renormalisable quantum field theory of general relativity would

be regularised.

One way to impose this physical wish list in NCG is by using a finite noncommu-

tative real spectral triple to model spacetime. These are noncommutative generalisa-

tions of the spectral triples in the duality outlined by Connes [35]. As they have a

noncommutative algebra of functions, the notion of a infinitesimal point is impossi-

ble on these spaces. You can think of this as not being able to simultaneously diago-

nalise the coordinate operators as they are now noncommutative. These spaces also

have a bounded Dirac operator, which encodes the energy cut-off condition. This

thesis will be concerned with fuzzy spaces which are finite real spectral triples where

the algebra of function is taken to be a finite dimensional matrix algebra. The motiva-

tions for this is that matrix algebras are the simplest noncommutative algebras, and

there exist fuzzy spaces that approximate the 2-sphere and the 2-torus. The construc-

tion of these are introduced in section 2.3 The fuzzy sphere has long been studied

and the descriptions as a finite noncommutative real spectral triple were outlined

in [45, 46]. These are finite noncommutative real spectral triple that still possess the

Lie group symmetry of rotations by SO(3). The Dirac operator for the fuzzy sphere

has a spectrum which is just a truncation of the continuum spectrum. Thus in terms

of spectral geometry, this makes the fuzzy sphere a near-perfect approximation of

2-sphere.

The spectral triple for the fuzzy torus was introduced in [47] and further studied

in [48]. Many of the geometrical construction on the ordinary torus are shown to
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have noncommutative analogues on the fuzzy torus. The fuzzy torus also possesses

an analogous group symmetry to that of the ordinary 2-torus. The spectrum of

the Dirac operator for the fuzzy torus was also shown to converge to the ordinary

spectrum as the matrix size is sent to infinity. Thus fuzzy spaces can be viewed as

approximations to ordinary manifolds, where the algebra of functions is deformed

to be noncommutative.

It should be noted that the term ”fuzzy space” does not always have the same

meaning in the literature. The only common feature amongst the different defini-

tions is the use of matrix algebras as noncommutative geometries. The presence of

extra structures, such as Laplacians, Dirac operators or real structures are often not

considered. For instance, the fuzzy sphere as introduced by Madore [49] is a non-

commutative geometry in the general sense. As the algebra of functions are built

from matrix representations of so(3) and so is noncommutative. However, it does

not fit into the spectral triple characterisation of Riemannian manifolds presented by

Connes [50]. It lacked the notion of a noncommutative Dirac operator, which was

provided later by Grosse and Presnadjer [51].

There are also slightly different definitions of the term “spectral triple” within

the literature. A spectral triple here will be taken to mean a real spectral triple

that satisfies the axioms laid out in [50]. It should be noted that there exist many

finite noncommutative analogues of geometries outside of these strict axioms, see

for example [52, 53, 54, 55, 56, 57, 58, 59, 60].

The possible Dirac operators on a fuzzy space were given an explicit expression

in terms of Hermitian and anti-Hermitian matrices in [46]. This parametrisation

allowed for the entries of the Dirac operator to be randomised, whilst keeping the al-

gebra and Hilbert space fixed. The space of fuzzy Dirac operators forms a R-vector

space and so integration over all possible fuzzy Dirac operators is well defined.

A Monte-Carlo simulation of the path integral over fuzzy spaces was conducted

in [61], where the simplest actions were investigated with surprising results. The

findings showed that the Dirac operators from certain models exhibit a phase transi-

tion upon varying the action parameter. It was found that near this phase transition,
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the eigenvalues of the Dirac operators were similarly distributed to those of an ordi-

nary manifold. However the analysis in [61] was qualitative and more concrete tools

of comparison were needed. This is what chapter 3 of this thesis is concerned with.

As the only variable in the random fuzzy spaces is the Dirac operator, the tools

developed are spectral in nature. That is they depend solely on the eigenvalues of

the operator. Thus many of the tools are adapted from those used in the spectral

geometry of manifolds. A number of different spectral measurements are introduced

with the aim to define a notion of dimension and volume for a fuzzy space.

Using the fuzzy sphere as a key example of an ideal fuzzy space, the notion of

symmetries in fuzzy geometry is investigated. Given that the fuzzy sphere and fuzzy

torus both possess Lie group symmetries which preserve their structure. The precise

nature of how these symmetries manifest in the Dirac operator is investigated. First

for the commutative case and then for the fuzzy case. This is the subject of chapter 4.

This thesis is therefore split into three main chapters (not including this introduc-

tion).

Chapter 2 introduces the spectral triple formalism that the rest of the thesis relies

on. In the first section, a constructive approach to the spin geometry of Riemannian

manifolds is given. Specifically the Hilbert space of spinors and the Dirac operator

for a Riemannian spin manifold are described in a constructive way. This is done

by introducing the notion of a Clifford algebra bundle over a Riemannian manifold

(M, g). The notion of a spin-c structure is briefly described in terms of the exis-

tence of a bundle isomorphism. The spin structure is defined as the existence of

an anti-linear operator which plays the role of the real structure in a spectral triple.

Whether these structures exist for all manifolds is not addressed, as it is a well stud-

ied problem, see [62] for instance. The Dirac operator is described in terms of local

coordinates and how to reconstruct the metric from the Dirac operator is briefly

outlined.

The next section gives the axioms for a spectral triple. An explanation of how

some of the axioms are realised in the commutative setting is provided. The axioms

12
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for a finite real spectral triple are given in full, along with any necessary algebraic

definitions. A detailed account of Clifford algebras and Clifford modules is given.

With the procedure on how to construct the high dimensional Clifford modules from

lower dimensional ones explicitly demonstrated. The characterisation of the Dirac

operator of a finite spectral triple is given and the section is concluded with the

definition of a fuzzy space.

The final section of the chapter introduces the fuzzy spaces examined in this thesis.

The philosophy of why making the algebra of functions noncommutative preserves

the symmetry of the fuzzy sphere is given. The metric on the commutative 2-sphere

is given as the induced metric from the embedding into R3. It is shown to be

equivalent to the canonical intrinsic form. The Dirac operator for the 2-sphere is then

also given in terms of the embedding of the sphere in R3. As the correspondence

with the fuzzy sphere Dirac operator is clearly seen in this form. The spectral triple

for the fuzzy sphere is then described. Introducing both the Grosse-Prešnajder Dirac

operator [51] and the Dirac operator given by Barrett in [46]. A discussion of the

other constructions of the fuzzy sphere is given.

The flat 2-torus is next introduced. A discussion of the modular transformations

that send the torus to a parallelogram and how they affect the metric. How they

also affect the Dirac operator is discussed with emphasis on the changes to the

spectrum. The Dirac operator for the fuzzy torus is then presented, highlighting

some of the subtleties that arise in the noncommutative geometry setting. Such as

the spin structure of a fuzzy torus being fixed based upon its shape.

The procedure of how the random geometries are created via a random matrix

model is then described. The choice of action that is investigated is given and the

unsuitability of the spectral action for random matrix models is discussed. The

location of the phase transitions for the types of fuzzy spaces studied in [63] are also

provided.

Chapter 3 is mostly based on the joint work by the author, John W. Barrett and Lisa

Glaser, which resulted in the following publication [64]. It introduces the spectral

measures investigated in this thesis and showcases them being applied to the fuzzy

13
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spaces introduced in chapter 2. Weyl’s law for the Dirac operator is stated and

then adapted to fuzzy geometry to try to measure the dimension and volume. It’s

limitations are discussed and used as justification for the introduction of the more

advanced methods of heat kernel asymptotics. How the volume and dimension are

encoded in the heat kernel is described, and how to use the spectral zeta function

to isolate each quantity is outlined. This also adapted and then applied to the fuzzy

spaces.

The spectral dimension of quantum gravity studies [12] is introduced and a dis-

cussion about its limitations when applied to fuzzy spaces is given. A modification

called the spectral variance is introduced as a remedy for problems the spectral dimen-

sion faces. Both quantities are applied to the fuzzy sphere and fuzzy tori, to justify

their use as dimensional measure. The random fuzzy spaces are then examined with

this measure.

The question of the volume of a fuzzy space is then addressed. Two methods are

investigated, both of which are based upon singular traces of operators. The first

method is based upon the Dixmier trace, which is often used in noncommutative

geometry to define the noncommutative integral [65]. It is shown to be related

to the spectral zeta function, which is used to extract the volume from the heat

kernel asymptotics. The second method is based upon the work by Stern [66]. It

is similar to the Dixmier trace, in that it expresses the residues of the spectral zeta

function as a limit of partial series. It also utilises the same heat kernel asymptotic

expansions as the Dixmier trace. The main advantage of the Stern volume is that it

converges much faster than the Dixmier trace. The Stern procedure also provides

a methodology to access the subsequent poles of the spectral zeta function. Which

historically required analytic continuation and a spectral expression did not exist.

These measures are applied to the fuzzy sphere and tori to justify their use on the

random geometries.

The actions investigated in the Monte Carlo matrix model allow for an arbitrary

scaling of the Dirac operators. This scaling of the random geometries becomes im-
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portant when investigating their volumes. A method to counteract it is introduced

and justified by examining the volume measures.

The final spectral measure investigated is again based upon the spectral zeta func-

tion. It is a spectral distance measure between two geometries as introduced in [67].

With the zeta distance equalling zero if and only if the spectra are the same. This

tool allows for the quantitative comparison of fuzzy spaces to continuum spaces,

which was done for the fuzzy sphere and fuzzy torus. This analysis showed that

as the matrix size is increased, both the fuzzy sphere and fuzzy torus get closer to

their continuum counterparts, and subsequent fuzzy spaces get closer to each other.

This zeta distance is then used to measure how similar the random geometries to

each other and to the fuzzy sphere. This was investigated at various values of action

parameter. Providing more evidence that the fuzzy spaces are closer to continuum

geometries at the phase transition.

Chapter 4 is concerned with investigating the role of symmetry in the construc-

tion of Dirac operators for fuzzy spaces. This chapter is somewhat exploratory, and

outlines the progress that has been made in understanding the role symmetry could

have in constructing new fuzzy spaces. Using the sphere as a guiding example, the

necessary differential geometry to describe the Dirac operator on a manifold which

possess a Lie group symmetry is given. The sphere is an example of a coadjoint

orbit, which are naturally symplectic manifolds and have a canonical Kähler struc-

ture. They can also be described as homogeneous spaces and additionally have a Lie

algebraic description via representation theory. Such an abundance of different de-

scriptions makes them perfect for investigating using the tools of noncommutative

geometry. However, not every coadjoint orbit is a spin manifold, which is required

for the duality that the construction of fuzzy spaces is based upon. The necessary

condition for a coadjoint orbit to be a spin manifold is given as the existence of a lift

of the isotropy representation to a spin group. As the Dirac operator is of primary

interest in this thesis, a description of how to encode the Lie group symmetry within

the Dirac operator is outlined. With the aim of applying an analogous procedure in

the fuzzy geometry setting. It is shown that the implementation of an SU(2) symme-
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try on the type (1, 3) and (0, 3) fuzzy spaces reduces the available Dirac operators,

to those that contain the fuzzy spheres as described by the Grosse-Prešnadjer and

Barrett operators, but also allowing others. The metric data of all these operators is

the same and equal to that of the fuzzy spheres. This is interpreted as the connection

not being the Levi-Civita connection for the round metric. Which could mean that

fuzzy spaces, as currently described, have torsion.

The final chapter is a summary of the results of the thesis and their implications.

It also contains a discussion of the possible paths of future research that are a conse-

quence of the work in this thesis.
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2
B A S I C N O N C O M M U TAT I V E G E O M E T RY A N D F I N I T E

S P E C T R A L T R I P L E S

The objects studied in this thesis are noncommutative versions of spectral triples in t

he duality of Connes [35]. The spectral triples in this duality require the presence of a

spin structure and a Dirac operator. The presence of a spin structure is topologically

restricting. Meaning that this duality is not for all Riemannian manifolds, but only

those that satisfy a certain cohomological condition - that the second Stiefel-Whitney

class vanishes, see [62] for the details.

Despite this seeming restriction, spin manifolds are of integral importance in the-

oretical physics. Given that spinors, which are sections of a spinor bundles over a

spin manifold, are how the fundamental fermions of physics are formally described.

The Dirac operator is a vital object of interest when studying fermions, as it encodes

the dynamics of fermions via the Dirac equation. It is thus a necessary component

of the Lagrangian for the standard model of particle physics. It is also used in the

study of quantum field theory in curved spacetime as it encodes the geometry of the

space via the veilbeins it contains (the details of this will be seen shortly).

So exploring extensions of this duality into the noncommutative world is a rea-

sonable endeavour. Pseudo-Riemannian manifolds are not considered in this thesis,

but are vital for physics. As the models of physics are typically conducted on a

Lorentzian manifold. All of the spin geometry discussed here extends to the pseudo-

Riemannian case.
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2.1 a primer on spin geometry

2.1 a primer on spin geometry

Spin geometry was born out of the mathematics put forward by Dirac to describe

the relativistic electron [68]. It has grown to become a powerful topic and has far

reaching applications in both mathematics and physics. The modern mathematical

treatment of spin geometry is documented comprehensively in the text by Lawson

and Michelsohn [62]. This text is mainly concerned with the Atiyah-Singer index

theorem which is a powerful statement about elliptic differential operators. However

the details surrounding this theorem are not immediately pertinent to the topics

discussed in this thesis. However much of the background on Clifford algebras and

Clifford modules in this thesis can be sources to this text. The book by Friedrich [69]

and the book by Berline et all [70] are exemplary introductions to the role of spin

geometry and Dirac operators in the study of Riemannian geometry. Many results

used in this thesis can be found in these texts.

A constructive approach is outlined here, where some of the finer details such

as existence are omitted. Starting with the definition of a Clifford algebra bundle.

Given a Riemannian manifold, M, a Clifford algebra1, Cl(Tx M, Qg), can be defined

at each point of the manifold. Where Tx M is the tangent vector space at the point x

and Qg is a quadratic form induced by the metric g defined as follows:

Qg(Xx) = gx(Xx, Xx) ∀Xx ∈ Tx M (4)

The Clifford algebra Cl(Tx M, Qg) is then the algebra generated by all Xx ∈ Tx M and

the multiplicative unit 1 ∈ R such that the multiplication obeys Xx · Xx = −Q(Xx)1.

The Clifford algebra bundle is constructed by letting x vary over M.

Definition 1. The Clifford algebra bundle Cl+(TM) is the fibre bundle over M,

where the fibres are the Clifford algebras Cl(Tx M, Qg) and the transition functions

1 A more detailed examination of Clifford algebras is given later in section 2.2.3
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2.1 a primer on spin geometry

are inherited from the tangent bundle TM, tij : Ui ∩Uj → SO(n), where n = dim(M)

and their action on Cl(Tx M, Qg) is given by:

tij(v1v2 . . . vk) = tij(v1) . . . tij(vk) (5)

Given a Clifford algebra bundle, Cl+(TM) the algebra of continuous real-valued

sections can be defined Cliff+(M) := Γ(Cl+(TM)). By replacing Qg with −Qg

and an analogous but different in general Clifford algebra bundle and its sections

can be defined, Cl−(TM) and Cliff−(M). By complexifying the Clifford algebras

Cl(Tx M) = Cl+(Tx M) ⊗ C, the complex Clifford algebra bundle, Cl(TM), can be

defined. With the space of continuous sections defined by:

Cliff(M) := Cliff+(M)⊗R C. (6)

To pass from a Clifford algebra bundle to a spin bundle, some additional require-

ments. These are topological in nature, but are expressed here as the existence of a

bundle isomorphism and the existence anti-linear operator.

Definition 2. A Riemannian manifold, M, is said to be spinc if there exists a vector

bundle π : S→ M such that there is an algebra bundle isomorphism:

Cl(TM) ' End(S) M is even dimensional (7)

Cl0(TM) ' End(S) M is odd dimensional. (8)

Where Cl0(TM) is the even part of the Clifford algebra (see section 4.1.4), and End(S)

is the endomorphism bundle of S, i.e. the fibre bundle with fibres End(Sx) where

Sx = π−1(x) for x ∈ M,. In such a case2, the pair (M, S) is said to be a spinc structure

for M.

2 This definition looks a little contrived without knowing the motivation for it, which arises when con-
sidering Euclidean space Rn with the standard metric, δ. It can be shown that Cl(R2n) ' Mn(C) and
Cl0(R2n+1) ' Mn(C). And this definition is the generalisation to arbitrary Riemannian manifolds.
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2.1 a primer on spin geometry

If a spinc structure (M, S) exists, then the bundle π : S→ M is to referred to as the

spinor bundle and the sections as spinors. Let Γ(S) denote its set of smooth sections.

To form a Hilbert space of square integrable spinors that is used in physical settings,

the space of sections needs to be completed in the following way.

Definition 3. The Hilbert space of square-integrable spinors, denoted L2(S), is defined

by the completion of Γ(S) under the norm induced by the following inner product

for φi ∈ Γ(S):

(φ1, φ2)M =
∫
M

〈φ1, φ2〉S
√

gdx. (9)

The inner product of spinors is just the Clifford inner product at each point of the

manifold. Where the inner product on the Clifford algebras can be defined on basis

elements, from its quadratic form as in the following definition.

Definition 4. Let {ei} be an orthonormal basis of V. Setting α = e1 . . . ep let α̂ =

ep . . . e1, then the inner product is

〈ei1ei2 . . . eip , ej1ej2 . . . ejq〉 := 〈1, eip . . . ei2ei1ej1ej2 . . . ejq〉 (10)

=


0 if p 6= q

0 if eik 6= ejk for any k

Q(ei1) . . . Q(eip) otherwise

(11)

and can be extended linearly to arbitrary elements of Cl(V, Q) by 〈α, β〉 = 〈1, α̂β〉

However, the presence of a spinc structure is not enough for a model of reality,

as each spinor has to be paired with its anti-particle spinor. To be able to do this

mathematically requires us to have not just a spinc manifold but a spin manifold.

Definition 5. A Riemannian spinc manifold is called a Riemannian spin manifold if

there exists an anti-unitary operator JM : Γ(S)→ Γ(S) such that:

1. JM commutes with the action of real valued continuous functions on Γ(S).
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2.1 a primer on spin geometry

2. JM commutes with Cliff−(M) in the even cases and with Cliff−(M)0 in the odd

cases.

The pair (S, JM) is referred to as a spin structure on M and JM is referred to as the

charge conjugation on M.

Another important structure which is necessary for understanding the basic ob-

jects in noncommutative geometry is the notion of a chirality operator. Let {γa}n
a=1

be the generators of Cliff+(M)
∣∣
U for some some open neighbourhood, U, of M and

let {xa}n
a=1 be local coordinates on U. The γa satisfy: γaγb + γbγa = 2g(∂a, ∂b) and

if an orthonormal basis is chosen for Γ(TM)
∣∣
U then the γa satisfy the relation:

γaγb + γbγa = 2δab. (12)

Definition 6. The chirality operator can be constructed from the γa as follows:

γM = (−i)mγ1 . . . γn (13)

where m = n/2 (when n is even) or m = (n− 1)/2 (when n is odd).

The final object needed is that of a Dirac operator.

2.1.1 The Dirac Operator

The Dirac operator can be thought of a “square root” of the Laplacian of a space and

contains a lot of information. The Dirac operator describes the dynamics of spinors

via the Dirac equation and it also encodes the metric information as is shown later.

To define the Dirac operator, the notion of a spin connection is required. Given

a Riemannian spin manifold M with spin structure (S, JM). Let {Ea} be a local

orthonormal basis for local patch TM
∣∣
U then g(Ea, Eb) = δab when restricted to this
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2.1 a primer on spin geometry

patch. Let θa be the duals to Ea, then the Levi-Civita connection in this basis acts on

vectors and one forms in the following way:

∇Ea = Γ̃ b
a c dxc ⊗ Eb (14)

∇θa = −Γ̃a
bc dxb ⊗ θc (15)

And recall that if Ea is an orthonormal basis orthonormal basis for TM|U then the

gamma matrices satisfy: γaγb + γbγa = 2δab.

Definition 7. The spin connection ∇S on the spinor bundle (S, M, End(S), f ) is the

lift of the Levi-Civita connection to the spinor bundle and is locally is given by:

∇S
a ψ(x) =

(
∂a −

1
4

Γ̃b
acγcγb

)
ψ(x). (16)

The notion of Clifford multiplication is also necessary to define the Dirac operator.

Definition 8. Clifford multiplication is defined as the linear map:

c : Ω1(M)× Γ(S)→ Γ(S) (17)

(ω, ψ)→ ω# · ψ (18)

where Ω1(M) is the space of 1-forms on M and ω# vector field in Γ(TM) associated

to ω. The vector field acts an endomorphism on the fibres of S via the embedding

Γ(TM) → Cliff+(M) ⊂ Γ(End(S)). Choosing local coordinates for U ⊂ M the one

forms can be written as ω|U = ωa dxa and the Clifford multiplication as follows

c(ω, ψ)|U = ωa(γ
aψ)|U. (19)

Where the dxa have been identified with ∂a via the metric and then embedded in

Cliff+(M) and become the γa.
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The pair (Γ(S), c) is a called Clifford module and will play an important roll in the

noncommutative setting. For completeness the definition for a Clifford module has

been included below:

Definition 9. A Clifford module over a compact Riemannian manifold (M, g) is a

pair (Γ(E), c) where Γ(E) is the sections of a smooth vector bundle, E, and c is a

Cl(TM)-module homomorphism from Γ (Cl(TM))→ Γ (End (Γ(E))).

The Dirac operator for a Riemannian manifold is now ready to be defined. Its

expression in local coordinates has been given to indicate why so much preparatory

work was necessary.

Definition 10. The Dirac operator for a spin manifold M with spin structure (S, JM)

is the composition of spin connection with Clifford multiplication and can be ex-

pressed in local coordinates as:

/DM = c ◦ ∇S : Γ(S)→ Γ(S) (20)

/DMψ(x) = −iγa
(

∂a −
1
4

Γ̃b
acγcγb

)
ψ(x) (21)

To see how the Dirac operator encodes the metric, it is useful to look at the defini-

tion of a Dirac operator in terms of vielbeins. Vielbeins are defined in the following

way. Take an orthonormal basis {ea} for Γ(TM) such that3 g(ea, eb)(x) = δab. This

can expressed in terms of the coordinate basis {∂µ} as follows ea(x) = eµ
a(x)∂µ(x).

A vielbein is defined to be eµ
a; the invertible transformation matrix, however the

name often extends to the orthonormal basis also. Also note that the metric equa-

tion about can now be rewritten as gµν(x)eµ
a(x)eν

b(x) = δab or equivalently

gµν(x) = e a
µ (x)e b

ν (x)δab, (22)

3 This is for Riemannian metrics, for pseudo-Riemannian metrics the δ in the relation is replaced with
the corresponding pseudo-Riemannian equivalent.
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2.2 spectral triples and fuzzy spaces

where eµ
a(x)ea

ν(x) = δ
µ

ν and eµ
a(x)eb

µ(x) = δ b
a . The Dirac operator in terms of

vielbeins is then:

/DM = −iγae b
a ∇S

b . (23)

So given a Dirac operator, the vielbeins can extracted4 and therefore the full metric

can be reconstructed.

2.2 spectral triples and fuzzy spaces

This thesis is primarily concerned with fuzzy spaces. These are matrix algebras that

capture some features of an ordinary manifold. The archetypical example is that of

the fuzzy sphere. This is a matrix algebra that is rotationally invariant. As there

are no longer a set of points on which the rotation group can act, the notion of ro-

tational invariance needs careful thought. A precise explanation of this is presented

in section 2.3.1.

Usually when you restrict to finite dimensional algebras you no longer are able to

have continuous symmetries. Think about approximating a circle by finitely many

points, you can no longer rotate this space by an infinitesimal amount and remain

in the same space (see Figure 1). For fuzzy spaces, it is possible to have a finite

dimensional algebra and retain these symmetries at the cost of commutativity.

The term “fuzzy space” is used to describe any construction of matrix algebras

that emulates a normal topological space. In this thesis a fuzzy space will mean

a noncommutative finite spectral triple. These are described below in full, but the

main difference between this construction of fuzzy spaces and others, is the presence

of a noncommutative analogue of a spinor bundle over the space. This is captured

by the presence of an operator that is the analogue of the Dirac operator. As the

Dirac operator specifies a metric tensor, spectral triples are key research entities into

studying noncommutative Riemannian geometry. With current efforts to loosen the

restriction from spin manifolds to arbitrary Riemannian manifolds. As the existence

4 This is explicitly demonstrated for the case of the sphere in section 2.3.1.
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2.2 spectral triples and fuzzy spaces

Figure 1.: An example of a circle approximated by finitely many points. The red
lines indicates a rotation that does not preserve the set of points. The
green line indicates a rotation that does preserve the set of points. So
the approximated circle does not possess the full rotation group, SO(2),
symmetry.

of a spin structure is quite restricting in a topological sense. There is also work to

try and include pseudo-Riemannian geometries into the noncommutative geometry

framework.

2.2.1 Spectral Triples

The details for a finite spectral triple as presented by Barrett in [46] are given in full

below. The details of a infinite spectral triple are omitted as it’s not pertinent to the

current work and can be found in [71].

Definition 11. A spectral triple is a triple (A,H, D), where:

• A is a ∗-unital algebra represented as bounded operators on H.

• H is a Hilbert space

• D is a self-adjoint operator on H such that the resolvent (i + D)−1 is a compact

operator and [D, a] is bounded for each a ∈ A.
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2.2 spectral triples and fuzzy spaces

Table 1.: The K0 dimension, n, of a real spectral triple is determined by the signs
ε, ε′, ε′′.

K0 Dimension
n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1

ε′ 1 -1 1 1 1 -1 1 1

ε′′ 1 1 -1 1 1 1 -1 1

Additional structures are required of noncommutative geometries if they are to be

appropriate generalisations of Riemannian spin geometries. The first is a Z2-grading

γ on the Hilbert space H such that:

γa = aγ (∀a ∈ A), γD = −Dγ (24)

If such a γ exists then the spectral triple is said to be even. The second is an anti-

linear map J : H → H such that:

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (when γ exists) (25)

where ε, ε′, ε′′ take values from table 1. If such a J exists then the spectral triple is

said to be real and J is referred to the as the real structure.

The values for ε, ε′, ε′′ are determined by the KO dimension of the real spectral

triple. Which for the spectral triple of a Riemannian spin manifold will be equal to

the dimension of the manifold modulo 8. The specific values of ε, ε′, ε′′ for each K0

dimension are given in table 1.

Two extra conditions are imposed, which are chosen to keep the framework from

straying too far away from commutative geometry. Firstly, using the J operator the

opposite algebra can be defined, which describes the right action of the algebra. If

a ∈ A then a◦ = Ja∗ J−1 defines a right action. Thus the right action of the algebra
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2.2 spectral triples and fuzzy spaces

on the Hilbert space is ψb = b◦ψ. The first requirement is that the left and right

actions of the algebra commute:

[a, b◦] = 0 Order zero condition. (26)

This is used to model the fact that for functions f ∈ C∞(M) and ψ spinors of some

Riemannian spin manifold commute. They satisfy ( f ψ)(x) = f (x)ψ(x) = (ψ f )(x).

In other words, in commutative geometry the left and right actions of the algebra

of functions are indistinguishable. It is this commutative geometry feature that is

preserved even when the ‘functions’ no longer commute with each other.

The second condition is to do with the fact that commutation with the Dirac

operator should also commute with the right action:

[[D, a] , b◦] = 0 First order condition. (27)

Looking at commutative geometry again, the Dirac operator can be expressed as in

eq. (23), and thus:

[D, f ]ψ = −iγaeb
a(∇S

b f )ψ. (28)

Which acts as multiplication by a function and so will commute with a right multipli-

cation by a function. It is this property that is required to persist in our noncommu-

tative geometry. Also note, that there are noncommutative geometry models where

higher order conditions are available, notably the work by Boyle and Farnsworth

[72].

The following spectral triple for a Riemannian spin manifold satisfies the two

conditions. It is this analogues of this object that are extended to be noncommutative

in what follows.

Definition 12. The real spectral triple for a Riemannian spin manifold, M, with spin

structure (S, JM) is the structure:

(
C∞(M), L2(S), /DM; γM, JM

)
, (29)
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2.2 spectral triples and fuzzy spaces

where L2(S) is the Hilbert space as the space of square integrable spinors and C∞(M)

is the algebra of smooth functions. And where /DM, γM and JM are the Dirac opera-

tor, chirality operator and charge conjugation as defined in the previous section.

2.2.2 Axioms for a finite real spectral triple

A few basic definitions are required before the axioms can be stated.

Definition 13. An algebra, A, is a vector space over a field F (usually taken to be

R or C), with an associative bilinear binary operation. Let a, b ∈ A, let the binary

operation be denoted by (a, b) 7→ ab ∈ A and associativity requires that (ab)c =

a(bc). A unital algebra is an algebra with an element 1 ∈ A such that 1a = a1 = a for

all a ∈ A. An algebra is said to be commutative if ab = ba for all a, b ∈ A and is said

to be noncommutative otherwise. The dimension of an algebra is the dimension of it

as a vector space.

A key example of a unital noncommutative algebra is the space of n dimensional

matrices over the complex numbers, denoted Mn(C) (note that the matrices over R

are also an example).

Definition 14. An algebra over C is said to be an involutive algebra or a ∗-algebra if it

possesses a linear map ∗ : A → A such that for all a, b ∈ A and α ∈ C:

1. (a∗)∗ = a for all a ∈ A

2. (ab)∗ = b∗a∗

3. (αa)∗ = ᾱa∗,

where ᾱ is complex conjugation.

The n-dimensional complex matrices form a unital ∗-algebra with the involution

given by the conjugate transpose. A comparison between spectral measures of the

averaged spectrum and the ensemble average of spectral measures is considered

below. A priori these methods have no need to produce similar results.
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Definition 15. Let A be a finite dimensional ∗-algebra

1. A pair (π,H) is called a ∗-algebra representation of A if π : A → L(H) is a

∗-algebra homomorphism into the space of linear operators on H, denoted by

L(H).

2. A subspace of V ⊂ H is said to be an invariant subspace of L ∈ L(H) if Lv ∈ V

for all v ∈ V.

3. A representation is said to be irreducible if the only π(A)-invariant subspaces

of H are H and {0}, otherwise the representation is said to be reducible.

4. A representation, (π,H) of A is said to be faithful if π(a) = π(b) implies a = b

for all a, b ∈ A

Definition 16. An inner product space is a vector space, V over a field F with a map

〈, 〉 : V ×V → F satisfying the following properties:

• Conjugate symmetry: 〈x, y〉 = 〈y, x〉 for any x, y ∈ V

• Linearity: 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 for a, b,∈ F and x, y, z ∈ V

• Positive-definite: 〈x, x〉 > 0 for x ∈ V\{0}

If the vector space is finite dimensional then is called a finite dimensional inner

product space.

A useful concept is that of a structure preserving map from an algebraic object to

itself.

Definition 17. An endomorphism of is a homomorphism from an object to itself.

Thus the precise meaning of an endomorphism changes depending on what is being

examined. An endomorphism of a vector space is a linear map to itself, an endo-

morphism of an algebra is an algebra homomorphism to itself. If an endomorphism

is also an isomorphism it is called an automorphism.
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2.2 spectral triples and fuzzy spaces

Definition 18. Given an inner product space (V, 〈, 〉), an operator A is said to be the

adjoint of an operator B if 〈Av, w〉 = 〈v, Bw〉, the adjoint of an operator is denoted

by A∗. An operator is said to be self-adjoint if A∗ = A.

The full algebraic definition of a finite real spectral triple is now given.

Definition 19 (Axioms for a finite real spectral triple). A finite real spectral triple

consists of the following data:

Objects:

1. an ∗-algebra A over R

2. a finite dimensional inner product space H, with a Hermitian inner product

〈·, ·〉

3. a faithful action5 ρ : A → End(H) such that ρ(a∗) = ρ(a)∗

4. an operator Γ : H → H such that Γ∗ = Γ, Γ1 = 1 called the chirality operator.

5. an anti-unitary6 operator J : H → H called the real structure.

6. an integer s that is defined modulo 8

7. a self-adjoint operator D : H → H

Conditions

(i) Γρ(a) = ρ(a)Γ for all a ∈ A

(ii) J2 = ε

(iii) [ρ(a), Jρ(b)J−1] = 0 for all a, b ∈ A

(iv) JΓ = ε′′ΓJ

(v) DΓ = −ΓD if s is even and DΓ = ΓD if s is odd.

5 A faithful action of an algebra can be called a faithful representation. It means that ρ(a) = ρ(b) =⇒
a = b for an a, b ∈ A

6 An anti-unitary operator, A, is such that (Av, Aw) = (v, w), A(v + w) = Av + Aw and A(αv) = αAv.
Note that for a Hermitian inner product (v, w) = (w, v).
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2.2 spectral triples and fuzzy spaces

(vi) JD = ε′DJ

(vii) [[D, ρ(a)], Jρ(b)J−1] = 0 for all a, b ∈ A

where the signs ε, ε′, ε′′ are taken from table 1.

Note thatA is not explicitly defined to be a matrix algebra because of the following

proposition.

Proposition 1 ([73]). If A is a *-algebra over R that is faithfully represented on a finite

dimensional Hilbert space by an R-linear ∗-algebra map π : A → End(H), then A is a

matrix algebra of the form

A '
N⊕

i=1

Mni(Fi) (30)

where Fi = R, C or H depending on i.

Remark 1 ([74]). Note that if A is required to be a finite dimensional C∗ algebra, then the

decomposition can be restricted to F = C.

The following definition is useful when considering the random geometries later

in the thesis.

Definition 20. A fermion space is defined to be specified by the objects 1 − 6 and

conditions i− iv in definition 19, (A,H, s, J, Γ).

Given a fixed fermion space, the following question can be asked, what possible

operators D exist? To define a path integral over geometries that is based upon the

Dirac operator, D, the notion of a fermion space will prove to be useful.

The conditions v− vii in definition 19 are all R-linear, meaning that the space of

Dirac operators on a fermion space form a R-vector space. Let this vector space be

denoted by G.

Remark 2. Note that this doesn’t not account for unitarily equivalent Dirac operators. The

space formed by taking the quotient of the unitarily equivalent Dirac operators is a moduli

space and was studied in [75].
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2.2 spectral triples and fuzzy spaces

Definition 21. Let R be a ring and 1R be the multiplication identity. A left R-module,

M, consists of an abelian group (M,+), and an operation · : R×M → M such

that ∀r, s ∈ R and ∀x, y ∈ M:

• r · (x + y) = r · x + r · y

• (r + s) · x = r · x + s · x

• (rs) · x = r · (s · x)

• 1R · x = x

The difference between an algebra and a module is that an algebra is a module

over a ring, where the ring is also a field. The notion of a right R-module also exists,

with nearly identical axioms. A R-bimodule is simultaneously a left and right R

module.

Remark 3. Note that Ja∗ J−1 defines a right action of the algebra A on H. Let ψ /

b := Jρ(b)∗ J−1ψ, then (ψ / b) / c = Jρ(c)∗ J−1 Jρ(b)∗ J−1ψ = Jρ(c)∗ρ(b)∗ J−1ψ =

Jρ(bc)∗ J−1ψ = ψ / (bc). This promotes H to a A-bimodule.

Definition 22. An irreducible R-module is an R-module, M, such that the only sub-

modules (subspaces that are R-modules in their own right) are M and {0}.

An irreducible A-bimodule, H, is a vector space that carries a left and a right

action of A, that is both left and right irreducible with respects to those actions.

More specifically there is no subspace W ⊂ H such that π(a)W ⊂ W and no space

X ⊂ H such that Xλ(a) ⊂ X. The left and right actions are either irreducible or

they can be decomposed into a direct sum of irreducible representations. Denoting

π = π1 ⊕ . . . πn as the left action with it’s decomposition and λ = λ1 ⊕ · · · ⊕ λm as

the right action with it’s decomposition. The following expression of H is possible:

H = ⊕ijHij, (31)

where Hij is an irreducible left-πi and right-λj module.

A simple but important example of a real finite spectral triple is:

Definition 23. A type (0, 0) matrix geometry is a finite real spectral triple of K0

dimension s = 0 and the following objects: (A0,H0, D0 = 0; Γ0 = 1, J0) such that
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2.2 spectral triples and fuzzy spaces

the each irreducible A0-bimodule in the decomposition of H0 are inequivalent (not

unitarily equivalent).

It can seen, using the axiom (iv) for even s, that D = 0 is the only option for type

(0, 0) matrix geometries, as the requirement D anti-commutes becomes D1 = −1D.

The statement in the above definition about each irreducible A0-bimodule being

inequivalent is expressed in that none of the Hij in the direct sum decomposition of

eq. (31) are repeated.

Example 1. Take H to be a C-linear vector subspace of Mn(C) with a faithful represen-

tation ρ : A → End(H) ' Mn(C) given by matrix multiplication, so that ρ(a)m ∈ H
and m∗ ∈ H for all m ∈ H and for all a ∈ A. The inner product on H is given by

(m, m′) = Tr(m∗m′), the real structure is given by J(m) = m∗. Thus the right action

of A is Jρ(a)∗ J−1m = Jρ(a)∗m∗ = mρ(a) which is just right matrix multiplication.

J is anti-unitary: (Jm, Jm′) = Tr((Jm)∗ Jm′) = Tr((m∗)∗(m′)∗) = Tr(m(m′)∗) =

(m′, m) = (m, m′). The action of a∗ is given by (m, ρ(a∗)m′) = Tr(m∗ρ(a∗)m′) =

Tr((ρ(a∗)∗m)∗m′) = (ρ(a∗)∗m, m′), let ρ(a∗) = ρ(a)∗ so a∗ is the adjoint of a in H.

The following result tells us that example 1 is the one example of type (0, 0) ge-

ometry one needs to study.

Proposition 2 ([46]). A type (0, 0) matrix geometry is isomorphic to one constructed in

Example 1.

Another way of generating fermion spaces is by taking Clifford modules. The

construction of a general so-called (p, q) module is presented next, as it will be used

extensively later on.

2.2.3 Clifford Algebras

The construction of fuzzy spaces heavily relies on Clifford algebras, so a detailed

account of the objects needed is presented here.
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2.2 spectral triples and fuzzy spaces

Definition 24. Given a vector space V (over F = R, C) and a quadratic form, Q on

V. The Clifford Algebra Cl(V, Q) is defined as the algebra generated (over F) by the

vectors v ∈ V and the multiplicative unit 1F such that:

v · v = v2 = −Q(v)1F (32)

In this thesis, Clifford algebras are defined over R or C however, much of what

follows is valid when the field has characteristic not equal to two. A Clifford algebra

can also be defined by taking a bilinear form, B, instead of a quadratic form and

defining the quadratic form by: Q(v) = B(v, v). One can also construct a bilinear

form from a quadratic form via polarisation: B(u, v) = 1
2 (Q(u + v)−Q(u)−Q(v)).

Using this polarisation it can be shown for u, v ∈ V that:

uv + vu = −2B(u, v) (33)

If {ei} is an orthonormal basis for the vector space V with respects to the bilinear

form B then they satisfy:

eiej + ejei = −2Bij (34)

Let η be a non-degenerate diagonal matrix of ±1s, with p occurrences of +1 and q

occurrences of −1. The matrix is said to be of type (p, q) and the total dimension is

given by n = p + q. A real Clifford algebra is then defined over V = Rn by:

eiej + ejei = 2ηij (35)

For a given (p, q) matrix η let Cl(p, q) denote the Clifford algebra over Rn.

The low dimensional Clifford algebras are presented here. From these examples

the higher dimensional Clifford algebras can be constructed [62].

Example 2. (i) Type (0, 0): There are have no generators, so there is only the identity

element to generate. So the space is isomorphic to R
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(ii) Type (0, 1): There is one generator, e that satisfies e2 = −1, so a general element is of

the form a + be, which is isomorphic to C under the map a + be 7→ a + bi.

(iii) Type (0, 2): There are have two generators e1, e2 that both square to −1 which anti-

commute, e1e2 = −e2e1. The product is not linearly decomposable in terms of 1, e1, e2,

in fact if we define eij =
1
2 eiej − ejei =

1
2 [ei, ej], then we see that eiej = eij + ηij. So

an arbitrary element consists of a + be1 + ce2 + de12. This space is isomorphic to the

quartenions H, sending (e1, e2, e1e2) 7→ (i, j, k). In the complex matrix representation

of H we have that (e1, e2, e1e2) 7→ (

 i 0

0 −i

 ,

 0 1

−1 0

 ,

0 i

i 0

).

(iv) Type (1, 0): This is generated by e, such that e2 = 1. So we have that an element has

the form a + be, which has product

(a + be) · (a + be) = 2η(a + be, a + be) (36)

= 2η(a, a) + 2η(a, be) + 2η(be, a) + 2η(be, be) (37)

= 2η(a, a) + 2η(be, be) = (a · a) + (be · be) (38)

So we have that Cl(1, 0) is isomorphic to R⊕R.

(v) Type (2, 0) We have e1, e2 such that e2
i = 1 and e1e2 = −e2e1. So an arbitrary element

is of the form a + be1 + ce2 + de1e2. Given the following algebra-isomorphism

(e1, e2, e1e2) 7→ (

1 0

0 −1

 ,

0 1

1 0

 ,

 0 1

−1 0

) (39)

we have that Cl(2, 0) ∼= M2(R)
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(vi) Type (1, 1) We have e1, e2 such that e2
1 = 1 and e2

2 = −1 and again e1e2 = −e2e1 so

the general form of an element again is a + be1 + ce2 + de1e2 and under the following

algebra-isomorphism

(e1, e2, e1e2) 7→ (

1 0

0 −1

 ,

 0 1

−1 0

 ,

0 1

1 0

) (40)

So we have that Cl(1, 1) ∼= M2(R) just like Cl(2, 0).

It turns out that the following classification for Clifford algebras exists:

Theorem 1. The Clifford algebra Cl(p, q) is of the form M2m(F) or M2m(F) ⊕ M2m(F)

where F = R, C or H and m is such that n = p + q = 2m or n = p + q = 2m + 1.

Specifically the classification follows Table 2 where s = p− q mod 8.

s Cl(p, q) s Cl(p, q)
0 M2n/2(R) 4 M2(n−2)/2(H)
1 M2(n−1)/2(C) 5 M2(n−1)/2(C)
2 M2(n−2)/2(H) 6 M2n/2(R)
3 M2(n−3)/2(H)⊕M2(n−3)/2(H) 7 M2(n−1)/2(R)⊕M2(n−1)/2(R)

Table 2.: Classification of real Clifford algebras.

Proof. See Lawson [62, Chp. 1, 4].

Note that the Clifford algebras are direct sums of matrix algebras. This fact is

useful when considering representations of Clifford algebras below. Another useful

fact about Clifford algebras is the following.

Proposition 3. Given a (p, q) Clifford algebra, the generators, {ei}, and the identity gener-

ate a multiplicative finite group.

Proof. Assuming there are n of the ei’s form the set

G = {I, ei, ei1ei2 , ei1ei2ei3 , . . . , ei1 · · · ein}. (41)
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The indices ordered so that i1 < i2 < · · · < in. It will be shown that ±G forms

a group with respect to multiplication. Start with eiej1ej2 · · · ejm and examine the

following cases. Either i = jk for some k, in which case the relation eiej + ejei = 2ηij

can be used to anti-commute the ei through until it meets it’s pair, with which it then

becomes either +1 or −1. This will yield an entry of ±G with one fewer gamma.

If ei does not appear in the element ej1 · · · ejm , then it can anti-commuted through

until the correct ordering is achieved and it therefore lies in ±G. Then any product

of elements can be broken down iteratively through this process. The set is clearly

finite with

2 ·
n

∑
k=0

n

k

 = 2 · 2n = 2n+1 (42)

elements.

2.2.4 Clifford Modules

Clifford modules can now be examined, as these will be a necessary component in

the definition of fuzzy spaces.

Definition 25. A (p, q)-Clifford module for a (p, q) Clifford algebra over the field F is a

pair (c, V). Where V is a finite dimensional vector space over either F or a field con-

taining F, and c : Cl(p, q)→ HomF(V, V) = EndF(V) is an algebra homomorphism.

V is said to be a Cl(p, q)-module for short.

The map c is often suppressed and the notation c(ψ)v = ψ · v for v ∈ V and ψ ∈
Cl(p, q) is used when there is no confusion. This is also called clifford multiplication.

Also note that a representation of a Clifford algebras is exactly a module for it. It

is more common to refer to a real or complex representations of a Clifford algebra to

specify what field the vector space is over.

Definition 26. A module (c, V) of a (p, q) Clifford algebra is reducible if the vector

space V can be written as non-trivial direct sum: W = W1⊕W2 such that c(ψ)(Wj) ⊆

37
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Wj for every ψ ∈ Cl(p, q). In such cases the following notation is adopted c = c1⊕ c2

likewise. A module is called irreducible if it is not reducible.

Due to the finite dimensionality of the Clifford modules, the following proposition

holds:

Proposition 4 ([62]). Every representation of a Clifford algebra can be decomposed into a

direct sum of irreducible representations.

The following statement along with Table 2 allows one to easily select the irre-

ducible representations for the Clifford algebras.

Theorem 2. The natural representation of Mn(F) as operators on Fn is, upto equivalence,

the only irreducible representation. The algebra Mn(F) ⊕ Mn(F) has two inequivalent

representations given by ρ1(m1, m2) = ρ(m1) and ρ2(m1, m2) = ρ(m2) where ρ is the

representation of Mn(F).

Proof. See [62, p. 32] or [76, p.653 Thm 4.3 and 4.4], realising that matrix algebras

are simple, so in either case we are dealing with a semisimple algebra.

So the module is taken to be (c, V = Ck) with k = 2n/2 for n even and k = 2(n−1)/2

for n odd. Note for odd values of n there are two inequivalent irreducible represen-

tations. Let Ck be equipped with the inner product (v, w) = v · w = ∑i viwi. Let

c(ei) = γi and c(1Cl(p,q)) = Ik the k× k identity matrix. Note a unitary representa-

tion of a finite group can always be taken [77]. As a result, all of the γi are unitary.

Using the standard fact that

(γiv, w) = (γi)abvbwa = vb(γi)abwa = vb(γi)T
bawa = (v, (γi)∗w), (43)

if (γi)2 = 1, then

(γiv, γiw) = (v, w) = (u, (γi)2w) = ((γi)∗v, γiw). (44)

Consequently ((γi)∗ − γi)v, γiw) = 0 for all v, w ∈ Ck. Thus (γi)∗ = γi, i.e it is

Hermitian. Similarity if (γi)2 = −1, then (γi)∗ = −γi, i.e. it is anti-Hermitian.
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The chirality operator and the real structure for Clifford modules are defined, and

will be used to construct the corresponding operators in the spectral triple.

Definition 27. The chirality operator for a (p, q) Clifford module is given by the

ordered product

γ̃ = is(s+1)/2γ1 · · · γn (45)

A useful fact for later is that when n is even (and so s even) γ̃ anti-commutes with

each γi and when n (and therefore s) is odd it commutes with each γi.

Definition 28. A real structure for a Clifford module is an anti-linear operator C :

V → V such that (Cv, Cw) = (w, v), C2 = εI and Cγa = ε′γaC for all γa. When the

chirality operator γ exists it is required that Cγ̃ = ε′′γ̃C, where ε and ε′ are taken

from 1.

Low dimensional examples of Clifford modules and inductively constructing higher dimen-

sional examples

The following examples are all that is needed to build any other Clifford module.

The procedure of how to do this is outlined below.

Example 3. • Type (0, 0): s = 0, V = C, Cv = v, the chirality is γ̃ = 1

• Type (1, 0): s = 7, V = C, and we have that γ1 = e as in Example 1, with γ̃ = e

also. Cv = v

• Type (0, 1): s = 1, V = C, γ1 = ±i with γ̃ = ±1. Either choice is equivalent and

Cv = v.

• Type (0, 2): s = 2, V = C2, γ1 =

 i 0

0 −i

,γ2 =

 0 1

−1 0

, with γ̃ = iγ1γ2 =0 1

1 0

. We find that C

v1

v2

 =

 v2

−v1

, by checking the conditions for C against

the gammas defined here.
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• Type (1, 1): s = 0, V = C2, γ1 =

1 0

0 −1

, γ2 =

 0 1

−1 0

, with γ̃ = γ1γ2 =0 1

1 0

. We find that C

v1

v2

 =

v1

v2

.

• Type (2, 0): s = 6, γ1 =

1 0

0 −1

, γ2 =

0 1

1 0

 with γ̃ = iγ1γ2 =

 0 i

−i 0

.

We find that C

v1

v2

 =

v1

v2

.

The aim is to take two Clifford modules and product them together in a way to

arrive at another Clifford module. This procedure has to be split into two streams,

one when at least one of the Clifford modules is of even type (s = q− p mod 8 is

even) and the cases when neither of them are even.

Even Case:

Given a (p1, q1)-Clifford module M(p1, q1) where s1 = q1 − p1 mod 8 is even with

chirality operators γ̃1, and another Clifford module M(p2, q2) of any type, then the

product Clifford module M(p1 + p2, q1 + q2) is formed by generating it with the

following elements:

γ1
1 ⊗ 1, γ2

1⊗, . . . , γn1
1 ⊗ 1, γ̃1 ⊗ γ1

2, γ̃1 ⊗ γ2
2, . . . , γ̃1 ⊗ γn2

2 (46)

These objects act on the space V1 ⊗ V2. Note that s = ((q1 + q2)− (p1 + p2)) mod

8 = (s1 + s2) mod 8 and so s is even if s2 is even and odd otherwise and similarly

n = (n1 + n2) mod 8 and is even if n2 (equivalently s2 is even), otherwise it is odd.

The Hermitian inner product on the module is defined to be given by:

(v1 ⊗ w1, v2 ⊗ w2) = (v1, v2)(w1, w2) (47)
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he chirality operator for the new Clifford module can now be determined:

γ̃ = is(s+1)/2(γ1
1 ⊗ 1)(γ2

1 ⊗ 1) · · · (γn1
1 ⊗ 1)(γ̃1 ⊗ γ1

2) · · · (γ̃1 ⊗ γn2
2 ) (48)

= is(s+1)/2 γ1
1γ2

1 · · · γn1
1︸ ︷︷ ︸

=i−s1(s1+1)/2γ̃1

(γ̃1)
n2 ⊗ γ1

2 · · · γn2
2︸ ︷︷ ︸

=i−s2(s2+1)/2γ̃2

(49)

= i(s(s+1)−s1(s1+1)−s2(s2+1))/2(γ̃1)
n2+1 ⊗ γ̃2. (50)

Note that s = (s1 + s2) mod 8 and so s = s1 + s2 − 8α for some integer α. So

s(s + 1) = (s1 + s2 − 8α)(s1 + s2 − 8α + 1) (51)

= (s1 + s2)(s1 + s2 + 1)− 2 · 8α(s1 + s2 + 1) + 82α2 (52)

= (s1 + s2)(s1 + s2 + 1) + 8 · (8α2 − 2α(s1 + s2 + 1)) (53)

= s1(s1 + 1) + 2s1s2 + s2(s2 + 1) + 8 · (8α2 − 2α(s1 + s2 + 1)) (54)

Consider now

s(s + 1)− s1(s1 + 1)− s2(s2 + 1) = 2 · s1s2 + 8 · (8α2 − 2α(s1 + s2 + 1)) (55)

Which results in:

(s(s + 1)− s1(s1 + 1)− s2(s2 + 1))/2 = s1s2 + 4 · (8α2 − 2α(s1 + s2 + 1)) (56)

As i4δ = 1 for any integer δ: i(s(s+1)−s1(s1+1)−s2(s2+1))/2 = is1s2 . The cases are then

split into when s2 is even and odd.

Even s2

As both s1 and s2 are even s1s2 = 4u for some integer u, then is1s2 = 1 also. Yielding

γ̃ = (γ̃1)
n2+1 ⊗ γ̃2 (57)
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Recall that γ2
1 = 1 and as n2 is even (γ̃1)

n2 = ((γ̃1)
2)n2/2 = 1. Yielding the following

for the chirality operator for even s2:

γ̃ = γ̃1 ⊗ γ̃2 (58)

Odd s2

If s2 is odd then n2 is odd and so n2 + 1 is even and so γ̃n2+1
1 = 1. Also note that as

s1 is even, so is s1s2. The problem is then split into the cases when s1 is a multiple

of 4 and when its just a multiple of 2. If s1 = 0, 4, then s1s2 = 0, 4s2 and is1s2 = i0 or

i4s2 and so is equal to 1. When s1 = 2, 6 then is1s2 = (−1)s2 or (−1)3∗s2 , but s2 is odd

and so is 3s2 so is1s2 = (−1). Notice that for s1 = 0, 4 then ε′′ = 1 and for s1 = 2, 6

then ε′′ = −1.

So a concisely way to write the formula for the new chirality operator is the fol-

lowing:

γ̃ =

γ̃1 ⊗ γ̃2 s2 even

ε′′1 ⊗ γ̃2 s2 odd.
(59)

The real structure now needs to be determined for this new Clifford module.

Given that C1, C2 are the real structures on M(p1, q1) and M(p2, q2) respectively,

one can check that the following defines a real structure for the product module

M(p1 + p2, q1 + q2).

C =



C1 ⊗ C2 s2 even, ε′′1 = 1

C1 ⊗ C2γ̃2 s2 even, ε′′1 = −1

C1 ⊗ C2 s2 odd, ε′ = 1

C1γ̃1 ⊗ C2 s2 odd, ε′ = −1.

(60)
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2.2 spectral triples and fuzzy spaces

Thus any Clifford module M(p, q) can be constructed by taking products of M(0, 2)

and M(2, 0) and then product with either M(1, 0) or M(0, 1) on the right, to achieve

any (p, q)-type.

Two constructions for the fuzzy sphere are presented later, one via a M(0, 3) Clif-

ford module and one via a M(1, 3) Clifford module. In order to relate them to each

other, the following construction between the product of two odd Clifford modules

will be useful, as it will allow M(1, 3) to be written as the product of M(1, 0) ·M(0, 3).

Odd Case:

This product is defined via a trick. First pick a Clifford module M(p1 + 1, q1) from

which we can identify M(p1, q1) by ignoring the extra generator t (where t2 = 1).

The complete list of generators for M(p1 + 1, q1) is then

t, γ1
1, γ2

1, . . . , γn
1 . (61)

The chirality operator, Γ, for M(p1 + 1, q1) is then given by the usual definition. To

proceed, define the product M(p1 + p2 + 1, q1 + q2) = M(p1 + 1, q1) · M(p2, q2) as

defined above for the even cases. The module M(p1 + p2, q1 + q2) can be defined

from M(p1 + p2 + 1, q1 + q2 + 1) by ignoring the generator t⊗ 1. Thus for M(p1 +

p2, q1 + q2) the generators are the following:

γ1
1 ⊗ 1, . . . , γn1

1 ⊗ 1, Γ⊗ γ1
2, . . . , Γ⊗ γn2

2 (62)

Note that Γ still has the generator t in it. This procedure is best understood via an

example:

Example 4. The product between M(1, 0) and another odd Clifford module M(p, q) is

given by identifying M(1, 0) with the restriction of M(2, 0), given by the representation in
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2.2 spectral triples and fuzzy spaces

example 3. Setting t =

1 0

0 −1

 and recalling that Γ =

 0 i

−i 0

 so that the new module

M(p + 1, q) is generated by

0 1

1 0

⊗ 1(n2−1)/2 =

 0 1(n2−1)/2

1(n2−1)/2

 , Γ⊗ γi
2 =

 0 iγi
2

−iγi
2 0

 . (63)

The chirality operator is then given by

γ̃ = is(s+1)

0 1

1 0

 Γn2 ⊗ γ1
2 · · · γn2

2 . (64)

Note that Γ2 = 1 as it is a chirality operator for a (2, 0)-Clifford module, and so Γn2 = Γ as

n2 is odd. Yielding

γ̃ = is(s+1)/2i−s2(s2+1)/2(−i)

γ̃2 0

0 −γ̃2

 (65)

Writing s = s1 + s2− 8 · α = 7+ s2− 8 · α it is found that s(s + 1)− s2(s2 + 1) = s1(s1 +

1) + 2s1s2 − 8 · δ = 56 + 14s1 − 8 · δ. Recall that i4 = 1 so that is(s+1)/2i−s2(s2+1)/2 =

i28+7s2 = i7s2 = (−i)s2 . Combining this above, it is found that

γ̃ = (−i)s2+1

γ̃2 0

0 −γ̃2

 (66)

Considering all possibilities for s2 and using that s1 = 7 it is found that (−i)s2+1 = −ε′′ so

that:

γ̃ = −ε′′

γ̃2 0

0 −γ̃2

 (67)
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The real structure then takes the following form:

C =

C̃1 ⊗ C2 ε′′ = 1

C̃1γ1 ⊗ C2γ2 ε′′ = −1
(68)

Now comes the key definition of this thesis:

Definition 29. A type (p, q) matrix geometry is a finite real spectral triple (s,H,A, Γ, J, D)

formed by the following product of a (p, q)-Clifford module and a type (0, 0) matrix

geometry.

• s = q− p mod 8

• A = A0

• H = V ⊗H0 with inner product 〈v⊗m, v′ ⊗m′〉 = (v, v′)〈m, m〉

• ρ(a)(v⊗m) = v⊗ ρ0(a)m

• Γ = γ̃⊗ 1

• J = C⊗ J0

• D is any operator allowed by the axioms of a finite real spectral triple

The Clifford module is required to be irreducible if s is even and the eigenspaces of

the chirality operator γ̃, V± ⊂ V to be irreducible if s is odd.

An investigation into what form D can take is outlined for the above setup.

2.2.5 Matrix Dirac Operators

Lemma 1. The Dirac operator for a finite dimensional spectral triple can be written as

D = θ + ε′ Jθ J−1 (69)
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2.2 spectral triples and fuzzy spaces

where θ∗ = θ and [θ, Jρ(a)J−1] = 0 for all a ∈ A. Also {θ, Γ} = 0 when s is even and

[θ, Γ] = 0 when s is odd.

Proof. The proof of this lemma is explicitly spelled out in Barrett (2015) [46]

For a given (p, q) matrix geometry7 EndC(H) ∼= EndC(V)⊗ EndC(H0) so θ can be

written as θ = ∑i ωi ⊗ Xi, where the ωi ∈ EndC(V) form a linearly independent set

and Xi ∈ EndC(H0) satisfy [Xi, J0ρ0(a)J−1
0 ] = 0 for all a ∈ A0. The condition that

θ∗ = θ requires that ωi and Xi are either both Hermitian or anti-Hermitian.

The ωi’s

Let Ω be the R-algebra generated by the matrices γa in the (p, q)-Clifford module.

Ω can be decomposed in the following way: Ω = Ω− ⊕Ω+, where Ω− is the subal-

gebra generated by odd products of γa and Ω+ is generated by the even products.

Recall that for even s, V had to be an irreducible Clifford module, in that the map

c : CL(p, q)→ EndR(V) or EndC(V) exists. In either case Ω⊗R C = EndC(V) by the

irreducibility of the Clifford module.

Recall that there are different conditions on θ, and therefore the ωi, when s is even

and s is odd. For even s that γiγ̃ = −γ̃γi, and so it is found that the ωi need to

be taken from Ω− ⊗R C in order for the conditions {θ, Γ} = 0, which reduces to

ωiγ̃ = −γ̃ωi, to be satisfied. For odd s it is required that [θ, Γ] = 0, which is just

[ωi, γ̃] = 0, which is satisfied by any element of Ω⊗R C. In either case the complex

coefficients can be absorbed into the Xi, resulting in the ωi ∈ Ω− when s is even

and the ωi ∈ Ω when s is odd. Recall that γa is Hermitian if (γa)2 = 1 and it is

anti-Hermitian if (γa)2 = −1.

The Xis

To examine the possibilities for the Xi ∈ EndC(H0) first realise that H0 ⊆ Mn(C) ∼=
Cn⊗ (Cn)∗, and due toH0 being finite dimensional EndC(H0) ∼= End(Cn)⊗EndC((C

n)∗).

Regarding elements of Cn as column vectors and elements of (Cn)∗ as row vectors,

7 For this decomposition to hold, the components of H = V ⊗H0 need to be finitely-generated projec-
tive modules [78, Chp 2. sec. 4.4, prop 4.], which both V and H0 are.
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the elements of End(Cn) are then left acting matrices and End((Cn)∗) are right act-

ing matrices so that (in the notation of [46])

Xi(m) = ∑
j

YijmZij (70)

for a finite set of matrices Yij, Zij ∈ Mn(C).

The condition that [Xi, J0ρ0(a)J−1
0 ] = 0 becomes ∑j Yijm[Zij, a] = 0, in which a set

of linearly independent matrices can be chosen for Yij and the condition becomes

[Zij, a] = 0.

If H0 is an irreducible bimodule then because Zij commutes with the right ac-

tion of the algebra, by Shurs Lemma each Zij acts as a C-multiple of the identity.

Therefore Xi(m) = ∑j ZijYijm in that case.

If H0 is a direct sum of irreducible bimodules

H0 =
⊕
i,j

Hij (71)

where i labels the irreducibles for the left action and j for the right action of A0.

Then as Zij has to commute with the right action of A0, Zij acts as a scalar on each

irreducible right module and thus can only permute the left ρi-modules for each

right action (specified by j).

In the case when only one of the Hij is nonzero for each i, so that H0 resembles a

block permutation matrix but where the identity matrices are replaced by irreducible

bimodules. Then the action of the Zij is block diagonal (to preserve the block decom-

position) and can also be represented by a left acting matrix Z′ij where the diagonal

blocks are permuted. So again Xi(m) = ∑j YijZ′ijm. This is best understood via an

example.
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Example 5. Let H0 have the form

H0 =


0 H12 0

H21 0 0

0 0 H33

 (72)

where each Hij is an irreducible bimodule and each Hij are inequivalent. Then if

Z =


aI 0 0

0 bI 0

0 0 cI

 (73)

the right action mZ for m ∈ H0 can be written as a left action Z′m where

Z′ =


bI 0 0

0 aI 0

0 0 cI

 (74)

Let Ki denote the matrix ∑ij YijZ′ij ∈ Mn(C). Then θ(v ⊗ m) = ∑i(ωiv) ⊗ (Kim)

and so the Dirac operator has the form:

D = ∑
i

ωiv⊗ Kim + (ε′)αi+1mK∗i (75)

where αi ∈N is the number of γa in ωi.

2.2.6 Fuzzy Spaces

Definition 30. Let V be a Clifford module of type (p, q) with chirality operator γ

and real structure C. For p + q even let V be irreducible and for p + q odd let the

chiral subspaces V± be irreducible. A fuzzy space is a real spectral triple with the

following objects
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2.2 spectral triples and fuzzy spaces

• H = V ⊗Mn(C)

• A = Mn(C)

• Γ = γ̃⊗ 1

• J = C⊗ J0

where the inner product on H is defined by:

〈v1 ⊗m1, v2 ⊗m2〉 = (v1, v2)Tr(m∗1m2) (76)

and the action of the algebra is just my multiplication on Mn(C), i.e.

ρ(a)(v⊗m) = v⊗ (am). (77)

The actions of Γ and J on an element of H are as follows:

Γ(v⊗m) = γ̃v⊗m, J(v⊗m) = Cv⊗m∗ (78)

And the final object is the Dirac operator, D, takes the following forms:

ε′ = 1

D = ∑
i

τi ⊗ {Hi, ·}+ ∑
j

αi ⊗ [Li, ·] (79)

where αj and τi are a product of an odd number of γa, τi and Hi are both Hermitian

and αj and Lj are both anti-Hermitian.

ε′ = −1

D = ∑
i

τ+
i ⊗ [Hi, ·] + ∑

j
α+j ⊗ {Li, ·}+ ∑

k
τ−k ⊗ {Hi, ·}+ ∑

l
α−l ⊗ [Ll, ·] (80)

where now τ+
i , α+j are even products of γa and τ−k , α−l are odd products. Also

α+j , α−l , Li, Ll are all anti-Hermitian and τ+
i , τ−k , Hi, Hk are all Hermitian.
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2.3 key examples of fuzzy spaces

2.3 key examples of fuzzy spaces

As mentioned in the introduction the term fuzzy space can refer to a more general

object that outlined in this thesis. There are many constructions in the literature that

describe noncommutative analogues of ordinary manifolds, that do not necessary

lie within the framework of this thesis. For instance there are matrix descriptions

of the 2-sphere [49, 51, 52, 53, 54, 57, 55, 79, 56, 80, 60, 81], the complex projective

spaces (which often include the sphere also) [59, 58, 82, 83, 84] and fuzzy Riemann

surfaces [85] to list a few. Even more examples of noncommutative geometries exist

if you look for noncommutative but not finite analogues, such as noncommutative

tori [86], the quantum pillow [87] and quantum homogeneous spaces [88, 89, 90].

Many of these constructions do not construct a version of the Dirac operator, and

if they do, it need not satisfy the axioms laid out above. A discussion of two other

approaches for the fuzzy sphere by Watamura-Watamura [52, 53, 57] and Balachan-

dran et al [54, 60] are discussed to understand why they do or do not fit in the fuzzy

space picture. The tools developed in chapter 3 are spectral in nature and in theory

can be used to analyse any geometry with a fuzzy analogue of a differential oper-

ator. However, the geometric interpretation would become unclear for geometries

that stray too far from the duality of Connes between spin manifolds and spectral

triples.

2.3.1 The Fuzzy Sphere

The fuzzy sphere is one of the simplest examples of a noncommutative geometry

and provides key insights into their construction. In this thesis we are concerned

with noncommutative geometry via the finite real spectral triple description. In this

approach, the fuzzy sphere belongs to a exclusive club of finite spectral triples that

approximate in some manner a continuum space. The only other example known is

that of the fuzzy torus defined in [47] which is introduced below.
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We want to view fuzzy spaces as approximations to ordinary manifolds, where the

algebra of functions is deformed to be noncommutative. We also want to view the

operator D as the fuzzy version of the Dirac operator on the sphere, which requires

us to understand the construction of a spinor bundle and the Dirac operator on the

ordinary 2-sphere.

We will investigate the more general differential geometric framework in which

the 2-sphere fits in a later section (as a homogeneous space and coadjoint orbit of a

Lie group). However for the intended purposes of this chapter we will omit some

details.

In order to define the canonical spectral triple for the ordinary 2-sphere we need

to construct the smooth functions C∞(S2) and the spinor bundle. We start by de-

scribing C∞(S2) in a manner than offers insight into the fuzzy sphere. Consider the

description of the sphere as the subspace of the three dimensional Euclidean space

satisfying the condition that x2
1 + x2

2 + x2
3 = 1. Take P to be the algebra of polynomi-

als in the coordinates xa for a = 1, 2, 3, with the product structure given by pointwise

multiplication. Let I be the ideal generated by δabxaxb − 1, then the quotient space

A = P/I is dense in the algebra C(S2), as the function f (xa) = ∑a xa separates

points, the closure of A under the sup-norm is again a subalgebra and it contains

the constant functions. We can write any element of A in the following form:

f (xa) = f0 + faxa +
1
2

fabxaxb +
1
3!

fabcxaxbxc + · · · (81)

where because xaxb = xbxa each coefficient fa1a2... is symmetric in each pair of indices.

The condition that δabxaxb = 1 states that fa1a2··· is trace-free (i.e. that we have

δaiaj fa1a2··· = 0 for any ai, aj pair). So for the 2-sphere the space A = P/I can be

considered its algebra of functions.
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There are a number of possible ways to replace this algebra of functions with a

finite dimensional algebra. If the functions are approximated by truncating their

series expansion after the nth products, i.e.

f (xi) = f0 + faxa + · · ·+ fa1a2...an xa1 . . . xan (82)

and take all the functions of this type, this results in a n-dimensional vector space of

the entries f0, . . . , fa1a2...an . In order to turn this vector space into an algebra requires

some thought. The normal product of two elements f , g, would obviously be outside

of this set of objects as it would require terms such as xa1 xa2 . . . xan xan+1 etc. Looking

at the case when n = 1, one could define a product to be f · g = f0g0 + ∑3
a=1 fagaxa,

this would turn the vector space into an algebra. However, this algebra can be

identified with four copies of C, which is exactly the algebra of functions at four

discrete points. This product can be extended to any value for n in the straight

forward manner and still only results in an algebra which consists of the functions

on a set of discrete points. This is unappealing because these point will not be

invariant under rotations and thus we lose a defining property of the sphere.

There is a way to preserve this invariance under rotations (i.e. invariant the action

of SO(3)), done by making the algebra noncommutative. Start by taking the n-

dimensional generators of the Lie algebra of SO(3), so(3) ∼= su(2), and denote them

by La. Then set xa = κLa, where κ is a constant that is defined by requiring ∑a(xa)2 =

1. Note that ∑a(xa)2 = ∑i κ2(La)2 = κ2C where C is the quadratic Casimir element

in the n-dimensional representation of su(2). This is equal to n2−1
4 for the generators

that satisfy [La, Lb] = iεabcLc [91]. So that ∑i(xi)2 = κ2(n2 − 1)/4. So taking κ =

2/
√

n2 − 1.

Notice that the coordinates no longer commute, we have
[
x1, x2] = iκx3, and the

cyclic permutations. So the notion of a point (x1, x2, x3) vanishes as one can never

know all three entries at the same time, i.e. it is impossible to simultaneously di-

agonalise each of the xi. However, by considering the 2-dimensional representation,

which are the Pauli matrices divided by 2, each generator has 2 eigenvalues. So
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picking a single coordinate xi = κσi/2 = σi/
√

3 it is possible to get two eigenvalues

namely ± 1√
3
. This is interpreted as being able to only distinguish which hemisphere

of the sphere we lie in. As we increase the dimension of the representation we get

more eigenvalues for each of the generators, which means we can narrow down the

zone we lie in. Which gives credence to the name of fuzzy sphere, as the spaces we

end up with are like the points of a sphere have been smeared together in a certain

fashion.

Note that as n → ∞ then κ → 0, so the coordinates in the limit commute and

the normal commutative sphere is recovered. This interpretation gives us a natural

picture of what we mean by a ‘quantum geometry’. However this limit is difficult to

define rigorously, with it being formalised in [92].

The above construction is the canonical viewpoint, however, there is another in-

terpretation which is arguably more enticing as it imposes a cutoff on the spherical

harmonics and in turn the energy states, the details of this treatment can be found

in [45]. Going back to the algebra of coordinates, C(S2), it can decomposed in to a

direct sum of irreducible representations8 of su(2):

C(S2) '
∞⊕

l=0

Vl, (83)

where Vl is the vector space underlying the irreducible representation of su(2) with

the highest weight l ∈ N. The vector space Vl is spanned by the spherical harmon-

ics Yl,m. A cutoff in the energy spectrum an then be imposed by ignoring all but

the first n + 1 representations in the decomposition of C(S2). Thus, in the fuzzy

sphere’s spectral triple the fuzzy spherical harmonics9 Ŷl,m are taken as the generators

of Mn+1(C), where10 l < n. The algebra is then decomposed into

An '
n⊕

l=0

Vl, (84)

8 Exactly how to arrive at this result is described in the appendix A.
9 These are matrix versions of the spherical harmonics, there precise construction can be found in [45].

10 Note that the reason l < n not l < n + 1 is because the index l starts at zero. So there are still n + 1
generators for Mn+1(C)
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where Vl is as above. The space Vl is spanned by the fuzzy spherical harmonics

Ŷl,m for m = −l, . . . , l. Thus a fuzzy sphere can be viewed as having a maximum

angular momentum and therefore an energy cutoff, which can be recast as a minimal

renderable distance, i.e. a Planck length. The implications of a Planck length being a

natural outcome of requiring the underlying space to be finite and noncommutative

is a very appealing property, and the idea is that a noncommutative analogue to a

spacetime will provide a good model for quantum gravity.

However, the algebra of functions does not define a metric or any of the other

structures required for a spectral triple. The usual metric desired on the sphere is

the round metric. This can be defined as the metric inherited from the embedding

into R3. Given the normal vector N = (x1, x2, x3) for the corresponding point of S2,

the flat (inverse) metric on R3 can be pulled back to the sphere to attain the metric11:

gab = δab − NaNb, producing:

g−1(x1, x2, x3) =


x2

2 + x2
3 −x1x2 −x1x3

−x2x1 x2
1 + x2

3 −x2x3

−x3x1 −x3x2 x2
1 + x2

2

 . (85)

This inverse metric is degenerate and has rank 2, and is annihilated by the vector

(x1, x2, x3). Thus is cannot be inverted it in this form. Using the standard spherical

parametrisation:

x1 = cos(φ) sin(θ) (86)

x2 = sin(φ) sin(θ) (87)

x3 = cos(θ) (88)

11 The details of this method can be found in Hawking and Ellis [93]
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for 0 ≤ φ < 2π and 0 ≤ θ < π, the usual formula for the round inverse metric can

be attained by the formula g−1(θ, φ) = Jac(θ, φ)g−1(xi(θ, φ))Jac(θ, φ)T which now

has full rank and can be inverted to give

g(θ, φ) =

1 0

0 sin2(θ)

 . (89)

which is the usual expression for the round metric for the 2-sphere.

The reason the Cartesian expression for the inverse metric is introduced is that it

is easier to compare the fuzzy Dirac operator to the ordinary Dirac operator when

making use of the embedding in R3. The following method for getting the induced

Dirac operator on a hypersurface (a subspace of codimension 1) in Euclidean space

(R, δ) is a very brief and to the point method taken from [94] and calculations for

the sphere are given.

It is shown in [94] that if an oriented hypersurface is isometrically immersed in

Euclidean space then the spinor bundle is trivial. Thus for such a space M the

space of square-integrable sections of the spinor bundle, L2(S), can be viewed as

L2(M) ⊗ Ck, for some power of k depending on the dimension of the Euclidean

space. The method of constructing the Dirac operator then begins with taking the

polynomial that defines the hypersurface, f (xi) = 0. First, for an embedding in Rn,

take n Dirac matrices, {γa} ∈ End(Ck) ∼= Mk(C) where k = n/2 for even n and

k = (n − 1)/2 for odd n, such that they satisfy the relation γaγb + γbγa = −2δab.

Note that for this definition, γ2
a = −1 Next, find the unit normal vectors to the

surface N. This can be done by using the formula N = ∇ f
|∇ f | . Then the formula for

the Dirac operator, taken from [94], is as follows:

D =
3

∑
i,j=1

(γiγj + δij)Ni∂j +
1
2

div(N), (90)
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where Ni are the ith components of the normal vector and

div(N) =
3

∑
i,j=1

(
δij − NiNj

)
∂iNj. (91)

This Dirac operator is the one associated to the metric induced from the embedding

into Euclidean space.

For the sphere, the embedding is into R3, so three gamma matrices are taken

γi ∈ M2(C), which act on 2-dimensional spinors C2. The 2-sphere is defined by
3
∑

i=1
(xi)2 = 1, thus the normal vectors are given by Ni = xi. It was shown above

that the induced metric from this embedding is the round metric that is desired, and

thus we can calculate the Dirac operator using eq. (90). First, note that ∂iNj = δij

and therefore:

div(n) =
3

∑
i,j=1

δijδij − NiNjδij =
3

∑
i=1

δii︸ ︷︷ ︸
=3

−
3

∑
i=1

x2
i︸ ︷︷ ︸

=1

= 2. (92)

Making use of this result in (90), the Dirac operator becomes:

D =
3

∑
i,j=1

(γiγj + δij)xi∂j + 1 =
3

∑
i 6=j=1

γiγjxi∂j +
3

∑
i=1

(γ2
i + 1)xi∂j + 1 (93)

Here the fact that γ2
i = −1 is used and thus the middle term vanishes in general to

give:

D =
3

∑
i 6=j=1

γiγjxi∂j + 1 (94)

Using that γiγj = −γjγi for i 6= j, the final form for the Dirac operator on S2 is:

DS2 =
3

∑
i<j=1

γiγj(xi∂j − xj∂i) + 1 (95)
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This Dirac operator has eigenvalues Z\{0} with eigenvalues l appearing with mul-

tiplicity 2|l| (see [94] for a proof of this). Thus the spectral triple for a 2-sphere is

given by (A = ⊕∞
l=1Vl, L2(S2)⊗C2, DS2)

We are now ready to present the spectral triple for the fuzzy sphere. There are

a number of ways to express a spectral triple for the fuzzy sphere. The most note-

worthy approaches for this thesis are those by Grosse and Prešnajder [51] who con-

structed the Dirac operator for the fuzzy sphere and in [45] it was shown to be part

of a formal spectral triple. The other approach is given by Barrett in [46], which

is similar to the other approaches however with a different Clifford module struc-

ture and arrives at a symmetric spectrum and a K0 dimension of 2 that matches the

ordinary 2-spheres.

Both approaches take the algebra to be the n-dimensional matrix algebra An =

Mn(C), which is viewed as being decomposed into An+1
∼= Vj ⊗ V∗j = ⊕2j

l=0Vl as

above (note that j can take integer and half integer values as it is equal to N/2 but l

takes values in the non-negative integers).

For the Grosse-Prešnajder approach (see [45] for further details) the fact that

spinor bundle for the 2-sphere is trivial for the 2-sphere is used, and the Hilbert

space required to be An ⊗ C2, where C2 is equipped with a Clifford module struc-

ture of type (0, 3). The Dirac operator is then taken to be:

DG−P = 1⊗ 1 +
3

∑
i=1

σi ⊗ [Li, ·], (96)

where Li are the n-dimensional representation of the real su(2) generators. The

right action needed for the commutator, is defined to be given by J(v⊗m) = σ2v†⊗
m∗, where σi are the representation of the generators of su(2) in the representation

corresponding to j = 1/2, i.e. they are related to the Pauli matrices. It was shown

that this is a real spectral triple but has no grading, Γ, and that the eigenvalues of the

Dirac operator are ±l with multiplicity 2l for l = 1, 2, . . . N and eigenvalue +(N + 1)

with multiplicity 2(N + 1) in [45]. Note that this spectrum is asymmetric due to the

lack of even grading.
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The method implemented by Barrett [46], enriches the (0, 3) geometry to a (1, 3)

geometry, where the new Hermitian generator is denoted by γ0. In which the K0

dimension would be s = 3 − 1 = 2, matching the 2-sphere. Again the algebra

is taken to be An and now the Hilbert space is given by An ⊗ C4 with C4 a type

(1, 3)-Clifford module. The Dirac operator for this fuzzy sphere is taken to be:

DB = γ0 +
3

∑
i<j=1

γ0γiγj ⊗
[
Lij, ·

]
(97)

where Lij are the generators of so(3) that satisfy:

[Ljk, Llm] = δkl Ljm − δkmLjl − δjl Lkm + δjmLkl (98)

and are antisymmetric in their indices. Note that the product γ0γiγj is anti-Hermitian

and an odd product so this definition of the Dirac operator agrees with the Dirac

operator definitions in eq. (79). The real structure and chirality operator are as given

in definition 30.

It is possible to arrive back at the Grosse-Prešnajder Dirac operator from the Bar-

rett operator shown in [46]. This is done by expressing the (1, 3) Clifford module as

arriving from the product of a (0, 3) Clifford module and a (1, 0) Clifford module, as

outlined in section 2.2.4. Let σa be the generators of the (0, 3) Clifford module then

we have that:

γ0 =

0 1

1 0

 , γa =

 0 iσa

−iσa 0

 (99)

Thus the Barrett Dirac operator can be expressed as:

DB =

 0 DG−P

DG−P 0

 . (100)

The link between these Dirac operators and the commutative 2-sphere’s Dirac

operator is more clearly seen when the commutative 2-spheres Dirac operator is

expressed as embedded from R3 as described above. To do this, note that the vector
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fields Xij = xi∂j − xj∂i satisfy the same Lie algebra relations as the elements [Lij, ·].
Under the notion that the Xij are the infinite matrix representation of the Lie algebra

generators, it can be seen that these Dirac operators all take a similar form. The

formal version of this statement is a hard question and comparing fuzzy spaces to

their infinite counterparts is an active area of research - see for instance [92, 95].

It should be noted that there are other matrix geometry constructions, that are

complete with an operator emulating the Dirac operator. The notable examples are

those by Watamura-Watamura [52, 53, 57] and Balachandran et al [54, 60].

The procedure of Watamura and Watamura enforces the existence of a matrix

analogue of the chirality operator for the sphere. They then proceed to investigate

the possible operators that anti-commute with it. The chirality operator they find in

[52] is of the form:

γW =
1
N (∑

i
σi ⊗ xi +

κ

2
), (101)

where the xi are the generators of the matrix algebra that satisfy [xi, xj] = iκεijkxk

and κ is defined as above. The N is a normalisation factor to ensure that γ2
W = 1.

This operator limits to the continuum chirality operator γ = 1
r ∑i σi⊗ xi as described

in [96]. However this operator does not commute with the action of the algebra

γW a 6= aγW . A modification was proposed in [53] by using the right action of the

matrix algebra instead of the left,i.e.

γo
W =

1
N (∑

i
σi ⊗ xo

i −
κ

2
). (102)

The modified chirality operator however does not commute with the right action

of the algebra. Thus there does not exist a real structure J that commutes with the

chirality operator12, breaking condition (iv) of the axioms in definition 19.

A matrix analogue of the Dirac operator is then found by considering all operators

that anti-commute with the chirality operator γo
W . Notably, this is a property of the

Dirac operator and chirality operator for the continuum 2-sphere, but not what is

12 As ε′′ = 1 for a (0, 3) Clifford module, we would require JγW = γW J.
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prescribed by condition (v) of definition 19 for a (0, 3) Clifford module. The operator

is found to be:

DW =
i

lκ
γo

Wεijkσixo
j xk. (103)

This Dirac operator does not fit into the framework of eq. (79) or eq. (80). However,

it does strike a resemblance to the chiral rotation of continuum Dirac operator. If we

let /D1 = i ∑ijk εijkσi(xj∂k) + 1 like in eq. (90), then we can form a different expression

of the Dirac operator as /D2 = iγ /D1 = iεijkσixjJk, where Jk = εabk(xa∂b) + σk/2.

It is shown in [57] that Watamura Dirac operator DW is a matrix analogue of /D2.

However, the Watamura Dirac operator DW is not a chiral rotation of the Grosse-

Presnadjer operator, which is the matrix analogue of /D1. As the Watamura fuzzy

sphere is not a fuzzy space as meant in this thesis, it is not explored. It is however

an interesting object of study, and whether or not it could be included in some

generalisation of fuzzy spaces, such as twisted spectral triples [97, 98], is worth

investigating.

Despite the construction being different to the usual methods, the Balachandran

method as outlined in [60] produces the same Dirac operator as the Grosse-Presnadjer.

Starting from a representation of the Ginsperg-Wilson algebra, two operators are con-

structed. One of which limits to the continuum Dirac operator and is of the same

form as the Grosse-Presnadjer operator, the other limits to the continuum chirality

operator. However, these operators do not anti-commute and thus at the matrix

geometry level, these operators do not satisfy the axioms for a fuzzy space.

As such, for the fuzzy sphere only the Barrett and Grosse-Presnadjer Dirac opera-

tors will be considered in the following chapters.

2.3.2 The Fuzzy Torus

A finite real spectral triple for the fuzzy torus has recently been developed by John

Barrett and James Gaunt [48]. The construction for a fuzzy torus is a lot more subtle

that for the fuzzy sphere and requires careful attention. A brief introduction to the
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Figure 2.: How the matrix A transforms the integer lattice in R2.

necessary structures of the commutative torus is given and a summary of the fuzzy

torus is given, with an emphasis on the features that will arise in the subsequent

chapters.

The flat torus is described mathematically by R2/(2πZ)2. The standard metric is

obtained by the identifying the opposite sides of a square with side length 2π. This

will be referred to as the unit square torus. Other metrics are obtained by pulling

back the flat metric δ by a matrix

A =

a b

c d

 (104)

viewed as a integer lattice transformation, where a, b, c, d ∈ Z and A is invertible.

The new metric is of the form (ignoring the factor of 2π):

ds2 = (a2 + c2)dθ2 + 2(ab + cd)dθdφ + (b2 + d2)dφ2 (105)

Thus we have a torus as identifying a parallelogram with principal axes (a, c), (b, d)

equipped with the metric above. We have that the scalar Laplacian for this metric is
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given by

∆T2 =
−1

(ad− bc)2 (b
2 + d2)∂2

θ − 2(ad + cd)∂θ∂φ + (a2 + c2)∂2
φ (106)

and has eigenvalues

λ∆
k,l =

1
(ad− bc)2

(
(dk− cl)2 + (bk− al)2

)
(107)

where (k, l) ∈ Z2.

The 2-torus has multiple spin structures, making it markedly different from the

sphere, which has a unique spin structure due to it being simply connected. The

spin structures on the torus are labelled by the first cohomology group with integer

mod 2 coefficients. For the torus, this is H1(M, Z2) ∼= Z2 ×Z2, giving four in total,

thus we can refer to the different spin structures by Σ ∈ Z2×Z2. The choice of spin

structure informs us whether the spinors are periodic or anti-periodic along the two

axis of the torus. The choice of spin structure of the torus affects the spectrum of

the Dirac operator defined upon it [99], but not the global formula for the Dirac

operator.

The Dirac operator has the form:

/DT2 =
1

ad− bc

(
γ1(d∂θ − c∂φ) + γ2(−b∂θ + a∂φ)

)
(108)

for a (0, 2) Clifford module. The eigenvalues of the Dirac operator are of the form:

λk,l,± = ± 1
ad− bc

√
(dk− cl)2 + (bk− al)2 (109)

where (k, l) ∈ (Z2 + Σ/2). Each eigenvalue appears once for two dimensional

spinors13. For the spin structure Σ = (0, 0) we have a zero eigenvalue with mul-

tiplicity two.

13 It will be useful to consider 4-dimensional spinors when examining the fuzzy torus.
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The algebra for a noncommutative torus is the completion of a free, unital, asso-

ciative *-algebra, A, generated by two unitary operators, U, V, on a Hilbert space h,

modulo the relation UV = qVU for some complex number q. The case when q = 1

is realised as the ordinary torus by setting U, V to be the plane waves, i.e. U = eiθ

and V = eiφ. When the algebra A is finite dimensional, i.e. U, V are matrices, we

refer to this as a finite noncommutative torus. Taking the Hilbert space, h to be

MN(C) (as opposed to a direct sum of matrix algebras) we say we are dealing with

the an irreducible finite noncommutative torus. One consequence of U, V being fi-

nite dimensional matrices is that qN = 1 for some positive integer N, due to U, V

only having a finite number of eigenvalues.

A key example of such a choice of U, V are the clock and shift matrices

C =


1 0 . . . 0

0 q . . . 0

0 0 . . . 0

0 0 . . . qN−1

 , S =


0 0 . . . 1

1 0 . . . 0

0 . . . . . . 0

0 . . . 1 0

 (110)

with the choice of q being a N-th root of unity, i.e. q = exp(2πi/N).

We can now define the fuzzy torus:

Definition 31. The fuzzy torus is defined as follows: Let U, V, h be a finite non-

commutative torus, let A = 〈U, V〉/(UV − qVU) denote the algebra, let X, Y ∈ A
such that XY = QYX for some complex number Q, such that14 QN = 1. Note that

Q∗ = Q−1. Take a (0, 4) Clifford module and the Dirac operator:

DX,Y =
1

Q1/4 −Q−1/4 ∑
i

γi ⊗ [Ki, ·] +
1

Q1/4 + Q−1/4 ∑
i<j<k

γiγjγk ⊗ {Kijk, ·} (111)

14 For instance, Q = qa for some integer a.

63



2.3 key examples of fuzzy spaces

with

K1 = K234 = −1
4
(X + X∗), K2 = −K134 = − i

4
(X∗ − X), (112)

K3 = −K124 =
1
4
(Y + Y∗), K4 = K123 =

i
4
(Y∗ −Y) (113)

Note that the Ki are all Hermitian, but the pre-factor of the commutator terms is

anti-Hermitian. So this formula is an example of equation (79).

There are number of parameters to choose in the definition of a fuzzy torus. For

the purposes of this thesis we will simplify to the following cases. Firstly we will

always take U = C and V = S unless otherwise stated and so q = exp(2πi/N) and

A = C〈C, S〉 ∼= MN(C) for a positive integer N. We will also take H = MN(C). The

choice of X, Y plays a pivotal role in the geometry of the fuzzy torus. The simplest

case is when X = C and Y = S and so Q = q. This corresponds to the fuzzy unit

square torus under the outlined in [48].

A result of [48] is that we are not free to specify the spin structure of a fuzzy

torus. It is predetermined by the choice of X and Y. It is shown in [48] that the

choice of X and Y is equivalent to choosing a matrix A as in (104). If we define

E(m,n) = q−mn/2UmVn. Then by choosing X = E(a,b) = q−ab/2UaVb and Y = E(c,d) =

q−cd/2UcVd =, which gives Q = qad−bc, the spin structure of the associated fuzzy

torus is then given by the handy formula of Σ = (a + c, b + d) mod 2.

The eigenvalues of the associated Dirac operator with X = E(a,b) and Y = E(c,d)

are of the form:

λk,l,± = ± 1
[ad− bc]q

√
[al − bk]2q + [dk− ck]2q (114)

= ±
√[

al − bk
ad− bc

]2

Q
+

[
dk− cl
ad− bc

]2

Q
(115)

where (k, l) ∈ (Z2
N + Σ/2) and [n]q =

qn/2−q−n/2

q1/2−q−1/2 which for q = e2πi/N we have [n]q =
sin(πn/N)
sin(π/N)

are known as quantum integers. We can uniquely index the eigenvalues
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with −N/2 ≤ k, l < N/2. The quantum integers have the property that [n]q → n as

q1/2 → 1 15.

A key feature to note is that we have doubled the Clifford module from a (0, 2)

type in the continuum case to a (0, 4) type for the fuzzy torus. This has the effect

that each eigenvalue (both the positive and the negative square roots) occur with

multiplicity two. This is likely related to the Nielsen-Ninomiya theorem [100, 101],

which states that a lattice theory of chiral fermions necessarily requires a doubling

of the fermions. Which suggests that using this fuzzy geometry does not circumvent

this no-go theorem.

There is a subtlety that the value of N affects the spectral geometry quite sub-

stantially. If N is divisible by ad − bc, then we have that Q = qad−bc has order

N/(ad− bc), i.e. QN/(ad−bc) = 1. So the formula for the quantum integers

[n]Q =
sin
(

nπ ad−bc
N

)
sin
(

π ad−bc
N

) (116)

repeats itself with period N/(ad− bc). As q has period of N we get that the eigen-

values repeat themselves ad− bc times as k, l are varied. We can interpret this (spec-

trally) as having ad − bc copies of an N/(ad − bc) irreducible fuzzy ad − bc torus.

Note that when N is not divisible by ad − bc then the behaviour is more compli-

cated. This case is considered briefly in [48] and is not studied here.

In this thesis we will focus on two fuzzy tori, the unit square torus and the torus

with a = 3, d = 1 and b = c = 0, which will be referred to as the a = 3 torus.

In Figure 3 a) we see the positive eigenvalues for the N = 90 fuzzy unit square tori

shown in orange, with the continuum values shown in blue. The surface shown is

interpolated between the eigenvalues and the contour lines are for constant height,

i.e. constant eigenvalue. We can see that the eigenvalues for the fuzzy unit square

torus agree for a small region around (k, l) = (0, 0) and then start to follow a more

sinusoidal path as k, l get larger. As N increases we recover the spectrum of the

15 You can also take the limit where q1/2 → −1 but that is not considered here
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(a) Unit square torus (b) a = 3 torus

Figure 3.: Plots of the positive Dirac spectrum for N = 90 fuzzy tori vs their contin-
uum counterparts. b) shows the duplication of the spectrum due to the
non-square geometry of the fuzzy torus and N = 90 being divisible by 3.

commutative torus in a point-wise manner but with twice the multiplicity. Meaning

that for each fixed (k, l) the fuzzy eigenvalue λk,l,± converges to the continuum value.

However note that at any finite N, the vast majority of the fuzzy spectrum is very

different to the continuum values.

Figure 3 b) shows the positive eigenvalues for the N = 90 fuzzy and continuum

a = 3 tori. Here we see an important feature of non-square fuzzy tori. The fuzzy

torus is reducible, in that the spectrum gets duplicated, as N = 90 is divisible by

ad− bc = 3. Also the maximum magnitude eigenvalue attained is similar to that of

the N = 30 fuzzy unit square torus. This will have an effect on some of the spectral

measurements we investigate in the next chapter.

2.3.3 Random Fuzzy Spaces

The formula’s for the fuzzy Dirac operators given by equations (79) and (80) opened

up new possibilities. If we fix a Clifford type and a matrix size, the entries of the for-

mula are just Hermitian and anti-Hermitian matrices with no further constraints16.

16 In [61] they consider Li matrices that are traceless due to the fact that the trace vanishes in the
expression of the Dirac operator as they appear in commutators.
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This allows us the possibility of randomising those entries, forming a path integral

over the space of geometries

Z(β, S) =
∫
G

e−βS(D)DD. (117)

This setting lends itself to being studied by Monte Carlo methods, as was done

in [61]. A brief account of the procedure is recalled below along with their findings.

This process is then a random matrix model (which are well studied) but where

the matrices are restricted to be Dirac operators in the finite spectral triple sense. If

we set G to be the space of Dirac operators, this is a R-vector space as shown in

the previous section. We can then take a probability distribution such that a Dirac

operator Dj occurs with probability:

P(Dj) =
e−S(D)

∑i e−S(Di)
(118)

for some real-valued action S(D). Thus we need to only modify the action to inves-

tigate different models.

Note that due to the Dirac operator being of the form in equation (79), the inte-

gral over Dirac operators can be expressed as an integral over the (anti-)Hermitian

matrices Hi, Lj, so the integration measure is DD ∝ ΠijDHiDLj. Writing the anti-

Hermitian matrices Lj = iHk, where Hj is a Hermitian matrix reduces the integration

DD to integrating over Hermitian matrices. It is well known in random matrix the-

ory that the integration measure for Hermitian matrices can be written as integrating

over arbitrary matrix elements with the Jacobian contributing a factor Πi<j|λi − λj|2,

where λi are the eigenvalues of D [102]. This term plays an important role as it can

be absorbed into the action to form a new action of the form:

Ŝ(D) = S(D) + ∑
i<j

log |λi − λj|2 (119)
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which provides an eigenvalue repulsion to the system countering the action S(D).

This stops the eigenvalues of the system from settling in any wells of the action po-

tential. It also stops the system from producing eigenvalues with high multiplicities.

Recall that the Barrett fuzzy sphere has eigenvalues j ∈ ±{1, 2, 3, . . . , N − 1} with

multiplicities 4|j| and j = ±N with multiplicity 2N. Thus it is unlikely for an ex-

act fuzzy sphere to arise in from the simulation for the low matrix sizes considered

below.

The only actions considered are those that are ’spectral’, in the sense that they

only depend on the eigenvalues of the Dirac operator:

S(D) = TrV(D) = ∑
λi∈spec(D)

V(λi) (120)

for some potential V bounded from below. We also need to make sure that
∫
G e−S(D)dD

converges in order to study it using Monte Carlo methods. This constrains the

possible actions we can choose. This restriction excludes the Connes-Chamseddine

spectral action [39],

S(D, Ω) = Tr( f (D/Ω)), (121)

where f is a smooth approximation to a step function to regularise the trace and Ω

is a energy scale cutoff scale. This action can recover the standard model action and

the Einstein-Hilbert action of GR as was discussed in the introduction. However,

this action does not have a well localised minima as it tends to zero asymptotically.

Thus is not appropriate for use in a random matrix model as the system will not

thermalise. In fact, it is needed that the potential V(x) → ∞ as x → ∞ in order for

the minimum to be sufficiently well localised.

In [61] they studied the simplest actions satisfying this constraint, which take the

form

S(D) = g2Tr(D2) + g4Tr(D4), (122)

with g4 > 0 or g4 = 0 and g2 > 0. As the space of Dirac operators G is a real

vector space, we can scale the Dirac operator D so that we can assume g4 = 1 or
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g4 = 0 and g2 = 1. When g4 = 1 and g2 < 0, the potential forms a double well,

which is known to lead to a phase transition in random matrix models. This was

also found in [61] and investigated further in [63] for a number of different Clifford

types. When g4 = 0 and g2 = 1, no phase transition was found and this model will

not be analysed here.

Monte Carlo Procedure

Once an action has been chosen, the matrix model was then setup to undergo

Markov Chain17 Monte Carlo simulation using the Metropolis-Hastings algorithm.

In which a new Dirac operator Dj+1 is generated from Dj by generating random

matrices, Ri, one for each randomised entry into the Dirac operator. We then define

δHi = l(Ri + R∗i ) and δLi = l(Ri − R∗i ), where l is real valued and determines the

step length in the configuration space. The parameter l undergoes adjustment to

make the Monte Carlo algorithm thermalise. We then define Dp = Dj + δD, where

δD is constructed linearly from the δHi, δLi. This new proposed Dirac operator Dp

is accepted (i.e. Dj+1 = Dp), if one of the following conditions hold:

• S(Dp) < S(Dj)

• exp
(
S(Dj)− S(Dp)

)
> p where p is a random number chosen uniformly from

[0, 1]

If the proposed Dirac operator Dp fails both conditions we just set Dj = Dj+1. After

a sufficient number of moves we will have that the steps are independent of the

choice of initial operator D0.

Results of previous studies

The random fuzzy spaces investigated in [63] have Clifford-type (1, 1), (2, 0) and

(1, 3). All were found to undergo a phase transition when using the action S =

17 This means that the generated Dirac operators, Dj+1 only depend on the current Dirac operator Dj
and not Dj−1, Dj−2...
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g4Tr(D4) + g2Tr(D2) upon varying g2, the location of the phase transition was dif-

ferent for each type however. It is these random geometries that will be investigated

in this work also. The location of the phase transition is found by examining some

thermodynamic variables under the partition function Z(β, S). For the action above

we have two variables available, the ‘inverse temperature’ β and the coupling con-

stant g2 (as g4 = 1). Thus we have the following thermodynamical quantities to

investigate:

〈S〉 = −∂ log(Z)
∂β

Var(S) =
∂2 log(Z)

∂β2 (123)

β
〈

Tr(D2)
〉
= −∂ log(Z)

∂g2
β2Var(Tr(D2)) =

∂2 log(Z)
∂g2

2
(124)

For a infinite system, the variance of both the action and the variance of Tr(D2)

should diverge at a phase transition if it is second order or higher, and for a finite

size system they should exhibit a pronounced peak. This was clearly found for

the type (2, 0) and (1, 3) geometries, with Var(S) shown in Figure 4 of [63] and

Var(Tr(D2)) shown in Figure 8 of [63]. However, for the type (1, 1) geometry, both

plots show a qualitative difference to the other two types indicating that it might

have a higher order phase transition or that larger matrix sizes are need to further

investigate.

For each type and matrix size the location of the phase transition can be found

in [63] and the calculated averages are given in table 3. The ranges of g2 values

investigated was different for each Clifford type, for type (1, 1) g2 was taken between

[−3.50,−2.00], for type (2, 0) between [−3.50,−2.50] and for type (1, 3) between

[−4.00,−3.30] starting at the least value in the respective ranges and increasing with

a step size of 0.05. We call g2 values that are more negative as being after the phase

transition and the g2 value that are less negative as being before the phase transition.

The scaling freedom within the action studied here, has the effect that the max-

imum eigenvalue of the geometries is restricted. Thus as we increase the matrix
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Table 3.: Table of the phase transition value of g2 for the three Clifford types of
random geometry investigated. The average is calculated using the data
from [63].

Type (1, 1) (2, 0) (1, 3)

Critical g2 value −2.382± 0.289 −2.781± 0.289 −3.696± 0.354

size in the simulations we do not attain larger eigenvalues but more densely pack

a finite region. As some of the spectral measures developed in chapter 3 are based

upon the asymptotic behaviour of the eigenvalues, this restriction of the eigenval-

ues may seem problematic. However, as all of the eigenvalues are scaled, this effect

can be countered by normalising the spectrum by some overall factor. There are a

number of ways to do this, for instance when comparing two geometries we could

force the eigenvalues with minimum or maximum magnitude to agree. We could

also scale the spectrum by a factor depending only on the matrix size, N, to counter

the scaling done in the action. As was discussed in [64] the minimum eigenvalues of

the random geometries turns out to be too ’random’ for practical use. And scaling

to match the maximum eigenvalues and the N-dependent scaling produce similar

results. When comparing the random geometries to the other well known fuzzy

spaces described above, we scale the random spectrum so the maximum eigenvalue

agree with the maximum eigenvalue of the well known geometries. The effect of

such a scaling on the geometry is to be determined, but it is expected to be related

to changing the ’size’ of the geometry18.

Observables for random fuzzy spaces

An observable is any real or complex valued function of the Dirac operators. The

expectation value of an observable f is calculated by performing the integral

〈 f 〉 = 1
Z

∫
f (D)e−S(D)DD. (125)

18 For instance, the sphere of unit radius has a Dirac spectrum of Z\0. The sphere of radius r ∈ R has
a Dirac spectrum of 1

r times the unit sphere spectrum.
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2.3 key examples of fuzzy spaces

This integral can be approximated by taking a discrete ensemble of Dirac operators

{D1, D2, . . . , DN} by the formula:

〈 f 〉N =
∑i f (Di)e−S(Di)

∑j e−S(Dj)
, (126)

which converges to the continuum expression as N → ∞. If the ensemble {Dj} is

taken from a Monte Carlo simulation of the path integral, the following simplifica-

tion exists [103]:

〈 f 〉N =
1
N ∑

i
f (Di). (127)

In the following chapters, measurements of fuzzy spaces are developed that depend

on the eigenvalues of their Dirac operators. Therefore in order to investigate these

measurements for the random geometries, their expectation values can be calculated

via eq. (127). This method with be referred to as taking the ensemble average.

However as the eigenvalues of the Dirac operators Dj are also observables. By

ordering the eigenvalues of each Dj and letting f i(D) denote the function that selects

the ith eigenvalue of D, the expectation value 〈 f i〉 can be calculated. Thus for a

random fuzzy matrix model, with Dirac operators that are N by N matrices, this

would result in N averaged eigenvalues of the Dirac operators, denoted by {〈 f i〉}N
i=1.

This collection of eigenvalues {〈 f i〉} will be referred to as an averaged geometry of

the model. This allows us to calculate the spectral measures for these averaged

geometries. It should be noted, that averaging the eigenvalues in this way is not

standard. However it provides to be a powerful tool in the investigation of the

geometry of these random fuzzy spaces. Thus, there are two possible ways to apply

the spectral measures discussed in the next chapter. Either by ensemble averaging

the quantities by eq. (127) or by calculating the measures for the average geometry

of the model.

There is also a third option, which is to collate all of the eigenvalues for each Dirac

operator Dj in the ensemble, into one large spectrum and then calculate the measure

on this set of eigenvalues. However this method will remove an important feature of
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2.3 key examples of fuzzy spaces

the spectra, the spacing of the eigenvalues and in the limiting case would produce a

continuum of eigenvalues. This is undesirable as none of the individual geometries

having a continuum spectrum. This method is not investigated here.

Using the averaged spectrum {〈 f i〉} of all the geometries involved is computation-

ally efficient, however it raises some questions about the meaning of an averaged

geometry. It also ignores that the fluctuations of the eigenvalues might be correlated

with each other, and this could have important consequences for the spectral esti-

mators. Calculating the ensemble average of the dimensional/volume measures is

therefore the preferred method, however it is computationally taxing. An investi-

gation of how constant the spectral estimators are over the ensemble is conducted

and used to justify whether using the averaged spectrum is a legitimate method to

study these models. An explicit comparison between the spectral measures of the

averaged spectrum and the ensemble average of the spectral measures is considered

below. A priori these methods are not required to produce similar results.
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S P E C T R A L M E A S U R E S O F F U Z Z Y S PA C E S

In the commutative geometry setting, there are many different definitions of the di-

mension of a space that are equivalent. For smooth manifolds, the simplest is the

minimum number of coordinates needed to specify any point within it. This is equiv-

alent to the minimum number of independent basis elements in each tangent space.

With the discovery of fractal spaces, new notions of dimension were defined which

need not take integer values [104]. In non-commutative geometry, the dimension is

usually replaced with the dimension spectrum, which is no longer a single number,

but a subset of the complex plane. It is defined as the set of singularities of the zeta

function of the Dirac operator [105]. The K0 dimension is another notion of dimen-

sion that for compact spin manifolds, is equal to the topological dimension modulo

8. See [106] for an overview of the various dimensions available in geometry and

algebra. Many of these notions generalise to the noncommutative geometry setting,

however they no longer necessarily agree. Also, these definitions tend to be trivial

when applied to finite spectral triples. However, we have seen that we have finite

non-commutative approximations to the sphere and the torus and as more examples

are uncovered, a notion of dimension that captures this feature is desirable.

The notion of the volume of a space is more narrowly defined, with the definition

stemming from prescribing a volume form, i.e. a differential form of top degree.

There are a number of ways to compute the volume depending on the context. In

terms of spectral geometry we will see it can be computed by probing the asymptotic

expansion coefficients of the heat kernel of a differential operator [107]. It can be
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3.1 spectral geometry

also calculated by a noncommutative integral over a generalised notion of a volume

form [65]. This notion of a volume form is given in the more abstract terms of a

Hochschild cocycle, which also encodes an orientation. However, the details of this

are not needed as the expression for the noncommutative integral can be given in

terms of a singular trace is outlined below.

In what follows we investigate a number of different approaches to calculate the

dimension and volume of a fuzzy space, using just the spectrum of their Dirac

operators. The results of this section were published in [64].

3.1 spectral geometry

One geometric pursuit that is perfectly generalisable to noncommutative setting is

that of spectral geometry. This is the study of a geometrical space by examining the

eigenvalues of operators defined upon it. The archetypical example is by studying

the Laplace operator for which a number of powerful statements exist, with Weyl’s

law being the most celebrated.

Theorem 3 (Weyl’s Law [108]). Given a compact oriented Riemannian manifold, M, and

the Laplace-Beltrami operator. The number N(λ) of eigenvalues less than λ satisfies

lim
λ→∞

N(λ)

λd/2 =
Vol(M)

(4π)d/2Γ(d/2 + 1)
(128)

If we order the eigenvalues so that λ0 ≤ λ1 ≤ . . . we can restate this theorem as an

asymptoptic approximation for the k-th eigenvalue:

λk ∼ 4π

(
Vol(M)

Γ(d/2 + 1)

)
k2/d (129)

It was shown that knowledge of the Laplace spectrum alone is not enough to char-

acterise a space. This was done by the creation of isospectral but not isometric ver-

sions of a 16-dimensional torus by Milnor [109]. These are different (non-isometric)

Riemannian manifolds (M, g) and (M′, g′) such that spec(∆) = spec(∆′) and an-
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3.1 spectral geometry

swered the adage of ‘Can you hear the shape of a drum?’ with a resounding no

for the spectrum of the scalar Laplacian [110]. Isospectral deformations of Rieman-

nian Spin manifolds exist also [111], meaning that knowledge of the spectrum of the

Dirac operator is not enough to specify a Riemannian manifold (M, g).

However, it was shown that if you know the spectrum of a differential operator,

and the relative position of two commutative von Neumann algebras within the

Hilbert space on which the differential operator acts, then this uniquely determines

a Riemannian manifold [112]. This holds for the Laplace-Beltrami operator and also

for the Dirac operator acting on a spinor bundle. Note that if we take the Dirac

operator on a spin manifold, we can not recover the precise Dirac operator back

from the spectrum, as we only fix it’s principal symbol i.e. we get a Dirac-type

operator not the Dirac operator. We do however fix the spin structure if we know the

volume form (or its cohomological content) [113, section 11].

Regardless of the existence of isospectral Riemannian manifolds, the formula (129)

clearly shows that the spectrum of the Laplacian contains information about the di-

mension and volume of the manifold. Thus is it possible to extract this information

from the spectrum. Powerful methods of extracting geometrical data from the spec-

trum of differential operators have been developed and will be outlined below. These

are mostly centred around analysing the heat kernel asymptotic expansion. As the

notion of the spectrum of an operator survives when we pass to noncommutative

geometry, one can hope to find a similar characterisation of the ‘dimension’ and

‘volume’ of a noncommutative geometry this way.

3.1.1 Weyl’s Law for Fuzzy Spaces

Weyl’s law for spectral triples requires us to deal with the Dirac operator and spin

bundles, whereas the original result holds for only the Laplace-Beltrami operator

over a Riemannian manifolds. However similar results hold for operators of Laplace-

type
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3.1 spectral geometry

Definition 32. A differential operator, L = −(aµν∂µ∂ν + aα∂α + a0), on smooth sec-

tions of a vector bundle, V π→ M, over a Riemannian manifold, M, where aµν, aα, a0 ∈
End(V), is said to be of Laplace type if aµν = gµνid. A differential operator D is said

to be of Dirac type if D2 is of Laplace type. If we expand D = γµ∂µ + γ0, then D is

of Dirac type if and only if we have that {γµ, γν} = −2gµνid.

Remark 4. We want the Laplace-Beltrami operator to have positive eigenvalues. Under this

definition we have that the Laplacian on flat space is given by ∆ = −gµν∂µ∂ν, so ∆ has

positive eigenvalues. Other authors use the convention that ∆ = gµν∂µ∂ν, in which −∆

would have positive eigenvalues.

Theorem 4 ( [108] ). Given a compact Riemannian spin manifold, M with a spinor bundle

of rank k and the Dirac operator with eigenvalues λi where {|λi|} is non-decreasing, we have

that

lim
n→∞

n
|λn|d

=
kVol(M)

(4π)d/2Γ(1 + d
2 )

(130)

where n indexes the eigenvalues.

Note that the right hand side of this expression is constant for a given geometry

and the sequence, {n/|λn|d} takes values in the positive reals. As the logarithm is a

continuous function on the positive reals we have that

log(n)− d log(|λn|)→ const = C = log

(
kVol(M)

(4π)d/2Γ(1 + d
2

)

)
(131)

The equation eq. (131) provides us with a possible procedure to calculate the

dimension and volume from the spectrum. Taking the approximation that

log(n) = d log(|λn|) + C, (132)

Vol(M) =
1
k
(4π)d/2Γ(1 +

d
2
) exp(C) (133)

for every n. The dimension d and the volume could then be calculated by fitting a

straight line to the graph of log(n) vs log(|λn|). However, as the expression eq. (131)
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3.1 spectral geometry

only holds asymptotically, a naive attempt to fit a straight line to the plot of log(n)

vs log(|λn|) is inappropriate. In order for this procedure to produce reasonable

estimations for the dimension and volume, the linear regression must be fitted to

only the largest eigenvalues. However, how to determine when the eigenvalues are

’large enough’ to get accurate results is still a question one must answer.

The situation is worse for the fuzzy spaces that this thesis is concerned with. As

Weyl’s law is essentially a “high energy” (i.e. large eigenvalue) investigation into

the structure of the geometry. If you consider the Dirac spectrum for the unit square

fuzzy torus, the eigenvalues deviate drastically from the continuum spectrum for

their largest values. This was shown in fig. 3, where it can be seen that the eigen-

values of the fuzzy torus and continuum agree for only a small region around the

origin. Thus if a procedure based upon Weyl’s law is developed to analyse the

largest eigenvalues only, this would not be effective for the fuzzy spaces in general.

As the highest eigenvalues do not typically obey the same behaviour as their con-

tinuum counterparts. We can view this as the finite/noncommutative effects of the

fuzzy spaces having the effect of altering the manifold-like geometry for the highest

energies. For some spaces such as the fuzzy sphere, these features are minimal, as

the spectrum is just a truncation of the continuum spectrum. For other spaces like

the fuzzy tori and possibly others, these quantum effects are very prevalent.

Thus we don’t necessarily want to have a definition of dimension based on the

highest eigenvalues present. We also do not want a dimension measure based on

the smallest eigenvalues as they encode some of the global geometry which will

also skew the dimensional measures [69, Chapter 5]. So we would need to use the

growth behaviour of the some middling region of the spectrum at each value of n.

How to choose such a region is not obvious and is not currently understood. To

demonstrate this point we examine another manipulation of Weyl’s law.
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3.1 spectral geometry

Figure 4.: A two parameter plot of Wnm for the fuzzy sphere of matrix size N = 30.
First plot shows the multiplicity blocks for each eigenvalue, the second
plot is corrected for this.

Another method to extract the dimension from Weyl’s law is to take two different

(distinct) eigenvalues, λn, λm and examine the difference of eq. (131) for each other:

log(n)− d log(|λn|)− (log(m)− d log(|λm|)) = log(n/m)− d log(|λn|/|λm|)→ 0.

(134)

The limit is to taken so that log(n/m) is bounded and we require that λn 6= λm. In

such a case we can define the following expression:

Wnm =
log(n/m)

log(|λn|/|λm|)
→ d (135)

This expression is invariant under rescaling of the eigenvalues, which will be useful

when investigating the random geometries, as they are arbitrarily scaled in the sim-

ulation to restrict the maximum eigenvalue, so only the density of the eigenvalues

varies as n increases.

We have plotted the function Wnm for the fuzzy sphere in fig. 4. The white squares

along the diagonal are where the two eigenvalues λn and λm are equal and thus Wnm

is ill-defined. The large multiplicities of each eigenvalue cause the value of Wnm to

vary as we examine each multiplicity block. This can be seen in the left-hand plot

where it causes a psychedelic pattern, whereas in the right-hand plot the value for

the middle of each multiplicity block is shown. This second plot shows that the
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3.1 spectral geometry

(a) N = 15 (b) N = 30

(c) Continuum torus

Figure 5.: A two parameter plot of Wnm for the unit square fuzzy torus of matrix
sizes N = 15 and N = 30, and the continuum unit square torus with the
same number of eigenvalues as the fuzzy torus.

fuzzy sphere has a stable notion of dimension throughout it’s spectrum, and that

value is close to 2.

The situation is drastically different when we consider the fuzzy torus. Figure 5

shows the plot of Wnm for the N = 15 and N = 30 unit square fuzzy torus com-

pared with the continuum counterpart. Here we see that the value of Wnm varies

wildly depending on where in the spectrum you investigate. The bad behaviour

of this function Wnm is again due to the large eigenvalues of the fuzzy torus being

significantly different their continuum counterparts. This is due to the q-number [l]q

only approximating the integer l for πl/N � 1 but deviates from this as l increases.

However their is a small region around the origin in which the function Wnm is ap-
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3.1 spectral geometry

(a) a = 3 Fuzzy Torus (b) Continuum a = 3 torus

Figure 6.: Plot of Wnm for the rectangular Torus with a = 3, d = 1, b = c = 0.
Figure a shows the fuzzy torus with matrix size N = 30 and b) shows the
continuum torus.

proximately 2. There doesn’t seem to be a way to characterise how big this region is

or its location as we increase the matrix size.

The plot of Wnm for the a = 3 fuzzy torus is included in fig. 6. Here we see that the

despite having the matrix size at N = 30, the a = 3 fuzzy torus (fig. 6 (a)) appears

be to be more similar to that of the lower matrix size N = 15 unit torus from 5.

The overall characteristics of the plot are not changed much by the change in torus

shape.

In fig. 7 the function Wnm is plotted for the type (2, 0) geometry with matrix size

n = 10 and with g2 values around the phase transition value. The value of Wnm

again varies depending on where you look in the spectrum, however, it is much

better behaved than the fuzzy torus example for certain values of g2. Wnm takes

Figure 7.: A two parameter plot of Wnm for the type (2, 0) random geometries, with
g2 taking values of −2.75, −2.80 (phase transition) and −2.85.
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3.2 heat kernels , spectral zeta functions and geometry

values between 1.2− 1.6 at g2 = −2.75 and between 1.6− 2.0 at g2 = −2.80. After

the phase transition their is no stable value, demonstrated in the plot for g2 = −2.85.

An interesting feature is that the value of Wnm drops to zero at the largest eigenval-

ues. This feature was present in the fuzzy torus plots (fig. 5 and fig. 6) as well as for

the random geometries. It is interpreted as the discrete nature of the fuzzy spaces

being encoded. Weyl’s law is the most naive spectral measurement of a geometry,

more advanced methods exist and are explored in the following section.

3.2 heat kernels , spectral zeta functions and geometry

The heat equation is given usually in terms of the Laplace operator1 in the following

way: Let M be a compact Riemannian manifold with Laplace-Beltrami operator ∆,

then the solution to the following equation are called the heat kernel for the operator

∆:

(
∂

∂t
+ ∆x)K(x, y; t) = 0 (136)

where K is a function on M×M×R+ subject to the initial condition that as t → 0,

K(x, y; t) is the Dirac delta distribution along the diagonal x = y. It is sometimes

denoted K(x, y; t, ∆) to show the dependence on the differential operator when it

is not obvious from context. The solution to this equation, K, is smooth and its

behaviour as t → 0 encodes the local geometry of the manifold M. We can write

down the formal solution as:

K(x, y; t, ∆) = e−t∆δ(x− y) (137)

where e−t∆ is given by the functional calculus, i.e. e−t∆ = 1− t∆ + t2∆2 + . . . . As

∆ is self-adjoint, we have a spectral resolution, {λn, φn}, such that ∆φn = λnφn and

1 Depending on your metric signature the heat equation may have a negative sign infront of ∆x.
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3.2 heat kernels , spectral zeta functions and geometry

{φn} form an orthonormal basis on the L2 sections. In this basis we can express the

heat kernel as:

K(x, y; t, ∆) = ∑
n

e−tλn φn(x)⊗ φ∗n(y) (138)

We can then view the heat kernel as an operator from the fibre above y to the fi-

bre above x. The heat kernel has an associated integral transform, which gives a

representation of the operator e−t∆:

(e−t∆φ)(x) =
∫

M
K(x, y; t, ∆)φ(y)dy. (139)

We then consider the case when x → y, which is encoded in the L2 trace over the

bundle V π→ M.

K(t, ∆) := TrL2(e−t∆) =
∫

M
trVx K(x, x; t, ∆)dx = ∑

n
exp(−tλn) (140)

We will often refer to the trace of the heat kernel as simply the heat kernel.

The above heat kernel can be constructed for any elliptic pseudo-differential opera-

tor and possess an asymptotic expansion as t→ 0 ∈ R+. Focussing on Laplace-type

operators, P, we have that [114]:

K(t, P) t→0∼ t−d/2
(

a0(P) + a1(P)t + a2(P)t2 + . . .
)

(141)

where d is the dimension of the manifold M and ai(P) can be expressed in terms of

local geometric quantities.

Specifying to a compact Riemannian manifold without boundary, equipped with

the Dirac operator squared, D2, as our Laplace-type operator we have that the odd
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3.2 heat kernels , spectral zeta functions and geometry

indexed coefficients all vanish (shown in [114]) and the first two even coefficients

can be expressed as:

a0(D2) =
1

(4π)
d
2

Tr(Id)
∫

M
ddx
√

g (142)

a2(D2) = − 1

(4π)
d
2

1
12

Tr(Id)
∫

M
ddx
√

gR (143)

where the Tr is taken over the fibre and Tr(Id) is equal to the rank of the bundle.

Higher coefficients have been computed also, but we will not be examining them in

this work.

How one computes each of these coefficients from the spectrum of a differential

operator alone is not given to us via this path of thought. However there is a spectral

method which selects the coefficients. We do this by making use of the spectral zeta

functions, a procedure that clearly carries over to the noncommutative geometry

setting as we shall see.

3.2.1 Spectral Zeta functions and Heat Kernel Coefficients

Let {λi} be a discrete set of non zero eigenvalues of a Dirac operator, D. Then for

sufficiently large Re(s), we define the spectral zeta function of the Dirac operator

as2:

ζD2(s) = ∑
i
(λ2

i )
−s

. (144)

This is an easily computed entity for a finite spectrum and for some simple cases

of infinite spectra a closed form can be found in terms of well known functions.

However for most spaces, the spectral zeta function is not expressible in such terms.

2 In order for the zeta function to be expressed as a sum, the space is assumed to be compact and
without boundary, however there do exists non-compact manifolds with discrete Dirac spectrum
(such as some link complements in R3, see [99]). For the finite spectral triples we aim to explore, the
sum is also well defined.
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3.2 heat kernels , spectral zeta functions and geometry

We shall see that it is just the residues of this function at certain poles that are of

importance to us.

The spectral zeta function can be shown to be the the Mellin transform of the

spectral heat kernel [115]:

ζD2(s) =
1

Γ(s)

∞∫
0

ts−1K(t)dt (145)

It can be shown that the coefficients in the heat kernel asymptotic expansion, can

be related to the residues of the spectral zeta function and Euler’s gamma function

[116]. We state the result for the square of a Dirac-type operator:

ak = Ress= d−k
2
(Γ(s)ζD2(s)) (146)

Thus considering k = 0 in this formula, we see that that a pole in the spectral zeta

function is located at precisely s = d
2 . Thus locating the most positive value of s

where the spectral zeta function has a pole provides us with a way to measure the

dimension of a space.

Also, by using eqs. (142) and (143) with eq. (146) we can express some familiar

geometric quantities in terms of the residues of the spectral zeta function:

Vol(M) =
(4π)d/2

Tr(Id)
Ress= d

2
(Γ(s)ζD2(s)) (147)∫

M
ddx
√

gR = −12
(4π)d/2

Tr(Id)
Ress= d

2−1(Γ(s)ζD2(s)). (148)

Equation (147) will be examined in detail in section 3.4. In order to make use of

eq. (148) to investigate fuzzy spaces, a notion of analytic continuation for the finite

spectral zeta function has to be developed. The recent work by Stern [66] appears to

provide a methodology for this, but it is not explored here.

Remark 5. Note that these statements hold for much more general settings. See [117] and

Theorem 3.5 for example in [116].
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Figure 8.: The spectral zeta function for the 2-sphere, demonstrating that the pole
occurs at s = d/2 = 1.

We can investigate this procedure for the continuum 2-sphere with relative ease.

Given that the Dirac spectrum for the 2-sphere is just the integers excluding zero

with the integer j occurring with multiplicity 2|j|, we have that

ζ /D2
S2
(s) =

∞

∑
j=1

2|j|(j2)−s + 2|j|((−j)2)−s =
∞

∑
j=1

4j1−2s (149)

= 4ζR(2s− 1) (150)

where ζR(s) is the Riemann Zeta function, which has a pole at s = 1. So for the

2-sphere spectral zeta function we have that ζ /D2
S2
(s) has a pole at 2s − 1 = 1, i.e

s = 1. But as the pole occurs at s = d/2 we have that d = 2.

For the 2-torus the spectral zeta function gets more complicated due to it’s more

complicated spectrum. Recall that the flat continuum 2-torus has a Dirac spectrum

of

λk,l,± = ± 1
ad− bc

√
(dk− cl)2 + (al − bk)2 (151)

with k, l ∈ (Z2 + Σ/2) where Σ denotes the spin structure. Each eigenvalue appears

once when dealing with two dimensional spinors. Note that the spin structure (0, 0)

also has a zero eigenvalue with multiplicity two for two dimensional spinors.

86



3.2 heat kernels , spectral zeta functions and geometry

Taking any spin structure (as we do not include zero eigenvalues in the spectral

zeta function) we have that:

ζ /D2
T2
(s) = ∑

k,l∈(Z2+Σ/2)

2
(ad− bc)−2s ((dk− cl)2 + (al − bk)2)−s (152)

simplifying to the square torus a = d = 1, b = c = 0 with the (0, 0) spin structure,

we have that

ζ /D2
T2
(s) =

∞

∑
k,l=0

(k,l) 6=(0,0)

4(k2 + l2)−s (153)

which is an Epstein zeta function in two dimensions, which is known to converge

absolutely for any Re(s) > 1 and have a pole located at s = 1 (see [118, Section 1.4]).

For the fuzzy spaces in question, the spectral zeta function is a finite sum, and

thus has no poles to locate. However, there is a way to investigate the potential

location of poles as we increase the matrix size of the fuzzy spaces. To see how one

does this, consider a continuum space and recall Weyl’s law for the eigenvalues of

the Dirac operator. Specifically that |λk| ∼ k1/d where the constants to make this

relation an equality depend on the volume of the space. Substituting this expansion

into the spectral zeta function at the value of s = d/2 we see that

ζD2(
d
2
) ∼

∞

∑
k=1

((k1/d)2)−d/2 =
∞

∑
k=1

k−1 (154)

which is well known to logarithmically diverge, i.e.

ζD2(d/2) ∼ lim
n→∞

n

∑
k=1

k−1 ∼ lim
n→∞

(log(n) + γ + O(1/n)), (155)

where γ is the Euler-Mascheroni constant.

So noticing that for finite spectra,

ζD2(0) =
N

∑
k=1

λ0
k = N (156)
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Figure 9.: Logarithmically scaled zeta function for the fuzzy sphere of various sizes
showing the location of the pole in the infinite limit.
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Figure 10.: Logarithmically scaled zeta function for the fuzzy torus of various sizes.

counts the number of eigenvalues. If we examine the following function ζD2(s)/ log(ζD2(0)),

then the value of s for which this function is constant as we increasing the matrix

size, should give an estimate for the dimension.

In the left-hand plot of fig. 9 we have shown the spectral zeta function for the fuzzy

sphere divided by log(N), where N is the number of eigenvalues of the fuzzy Dirac

operator. The point of intersection is where we expect to read off the dimension. To

make this more visible we plot the difference between consecutive N spectral zetas

in the right hand plot. The zeroes of this can then be used as dimension estimator.

Figure 10 shows the same for the fuzzy torus. Here we see that it behaves similarly

to the fuzzy sphere, despite the fuzzy torus having a spectrum that does not obey

Weyl’s law for the correct dimension for it’s largest values.
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3.3 spectral dimension and spectral variance

There are a number of issues with this approach. The first is that it relies on

you having a family of fuzzy spaces that are all approximating the same space.

This is the case for certain highly symmetric spaces such as the 2-sphere and the 2-

torus, but for the random geometries it is not clear that we are dealing with similar

geometries as we increase the matrix size. The second issue is that it is a dimensional

measure that requires two fuzzy spaces to compute. This is an unideal restriction

as we may want to ask what dimension a certain fuzzy space is, without having to

compute a sequence of fuzzy spaces just to do so. As the dimension is supposed to

be an intrinsic property of each fuzzy space, requiring multiple to get an estimate

is less than satisfactory. Thirdly the convergence is logarithmic in the matrix size,

which is unsatisfactory as a practical dimensional measure as the random geometries

are currently limited to matrix sizes of order 10. Despite its shortcomings as a

dimensional measure, this procedure of heat kernel asymptotics will show itself to

be very useful in determining a volume measure.

3.3 spectral dimension and spectral variance

Another dimensional measure based upon the heat kernel is the spectral dimension.

This was first used in [119] as a measurement of causal dynamical triangulations

(CDT), where they showed that the spectral dimension is dependent on the energy

scale investigated. With the spectral dimension of a CDT being 4, the topological

dimension of spacetime, at low energy scales and reducing to a value 2 at high

energy scales. The notion of the dimension being a scale dependent quantity has

become a popular aspect of many theories of quantum gravity - see [120] for a

review. The spectral dimension has since been applied to many theories of quantum

gravity, as it is easily adapted to discrete geometries as well as continuum spaces,

making it an excellent comparison tool between theories.
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3.3 spectral dimension and spectral variance

For the squared Dirac operator, D2, on a manifold, the spectral dimension is de-

fined as:

ds(t) := −2t
d log(KD2(t))

dt
(157)

It can be seen from eq. (141) that the dimension of the manifold in question can be

obtained from the small t behaviour of the spectral dimensions. Specifically it can

be shown that ds(0) = d. As we know from the previous section, the coefficient a0 is

proportional to the volume of the space and it contributes the value d to the spectral

dimension. The higher coefficients are the root of the deviation from this value

as t grows, and the coefficients a2, a4, . . . depend on the curvature and connection.

The spectral dimension has the interpretation (in quantum gravity studies) that by

varying the parameter t we are probing the geometry at different energy/length

scales.

If the Dirac operator has a discrete spectrum then we can express the spectral

dimension in terms of the eigenvalues in the following way:

ds(t) = 2t
∑λi

λ2
i e−tλ2

i

∑λi
e−tλ2

i
. (158)

For large values of t the spectral variance is dominated by the smallest eigenvalues

and as we decrease t the larger eigenvalues play more of a role. Thus we can view t

as determining the energy scale at which the spectral dimension is measuring. With

t → 0 determining the infinite-energy/continuum limit. This interpretation of an

energy scale dependent dimensional measure will be of interest when considering

the a = 3 torus.

A problem with dealing with the Dirac operator is that often we do not have an

eigenvector with eigenvalue zero. The constant function is always an eigenfunc-

tion of the scalar Laplacian and so the Laplacian always has a zero eigenvalue in

it’s spectrum. However, when the scalar curvature is non-zero the Dirac operator

doesn’t have a zero eigenvalue [69]. The problems arise in the following way.
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3.3 spectral dimension and spectral variance

If the operator has a zero eigenvalue, λ0 = 0, then we have that:

ds(t) = 2t
λ2

1e−λ2
1t + λ2

2e−λ2
2t + . . .

1 + e−λ2
1t + e−λ2

2t + . . .
(159)

=
2tλ2

1

eλ2
1t + 1 + e−(λ

2
2−λ2

1)t + . . .
+

2tλ2
2e−(λ

2
2−λ2

1)t + . . .

eλ2
1t + 1 + e−(λ

2
2−λ2

1)t + . . .
(160)

∼ 2tλ2
1e−λ2

1t → 0 as t→ ∞. (161)

However, if the magnitude of the smallest eigenvalue is non-zero, λ0 6= 0 we have

that:

ds(t) = 2t
λ2

0e−λ2
0t + λ2

1e−λ2
1t + . . .

e−λ2
0t + e−λ2

1t + . . .
(162)

=
2tλ2

0

1 + e−(λ
2
1−λ2

0)t + . . .
+

2tλ2
1e−(λ

2
1−λ2

0)t + . . .

1 + e−(λ
2
1−λ2

0)t + . . .
(163)

∼ 2tλ2
0 + o(te−t)→ ∞ as at→ ∞. (164)

So to summarise if the Dirac operator doesn’t have a zero eigenvalue, then the spec-

tral dimension grows linearly with t, in the t → ∞ limit. This does not pose a

problem for the manifold scenario, as we are looking at ds(0) for the dimension.

However, if we plan on using this to measure the fuzzy spaces, then we may want

to look at value of t greater than zero in order to avoid the behaviour due to the

discreteness.

To remove this undesirable feature of the spectral dimension, the following object

was proposed in [64].

Definition 33. The spectral variance is defined to be

vs(t) = ds(t)− t
dds(t)

dt
= 2t2 d2 log(KD2(t))

dt2 (165)
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3.3 spectral dimension and spectral variance

The spectral variance can be expressed in terms of the eigenvalues of the operator

as:

vs(t) = 2t2

∑λ λ4e−λ2t

∑λ e−λ2t
−
(

∑λ λ2e−λ2t

∑λ e−λ2t

)2
 . (166)

Note that we still have the property that vs(t)→ d as t→ 0.

The origin of the name can be seen from eq. (166) as it is the variance of λ2 in

a probability distribution p(λ) = 1
K e−tλ2

. If we consider a system with partition

function equal to heat kernel trace K, and the parameter t the inverse temperature

t = β = 1
T . Such a system can be viewed as a thermodynamical system with

Hamiltonian/Energy D2. In such a case the spectral dimension is given by the

internal energy, ds(t) = 2t〈D2〉 and the spectral variance is given by the heat capacity,

vs(t) = 2Cv. It is worth remembering that the heat capacity of an ideal gas in flat

d-dimensional Euclidean space is equal to the d/2. So one interpretation of this

method is that we are determining the dimension of the geometry by examining the

diffusion of an ideal gas (as goverened by D2) in that geometry and measuring it’s

heat capacity.

An important feature of both the spectral dimension and spectral variance is that

they are insensitive to overall multiplicity factors. If we double the spectrum for

instance, so every eigenvalues appears twice, the spectral dimension and variance

remain unchanged. This will be important when considering non-square fuzzy tori

below, as the fuzzy spectrum obtained is duplicated ad− bc times, see Section 2.3.2.

Also, given a Dirac operator D, we have that µD is also a Dirac operator and the

eigenvalues scale in the same way. For a manifold this amounts to the distances

between points scaling by a factor of µ−1. Note that both the spectral dimension and

spectral variance posses the scaling property:

ds(µD, t) = ds(D, µ2t), vs(µD, t) = vs(D, µ2t). (167)
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Figure 11.: Spectral Dimension and the spectral variance for the continuum sphere.

As the dimension of a manifold is independent of the distance between any two

points on it3, this scaling is deemed a trivial difference.

3.3.1 Spectral Measures of the Fuzzy Sphere and Torus

The fuzzy sphere and fuzzy tori are first examined to justify the use of the spectral

variance as a dimensional measure. We will then take a deeper look at the random

geometries.

Spheres

Figure 11 shows the spectral dimension and the spectral variance for the continuum

sphere. As the 2-sphere does not have a zero eigenvalue for the Dirac operator we see

the characteristic linear growth of the spectral dimension for large values of t. The

spectral variances drops to zero for large t as expected. Both the spectral variance

and dimension attain the value 2 at t→ 0, which is the topological dimension of the

sphere.

Figure 12 shows the spectral dimension and spectral variance for fuzzy spheres of

sizes N = 5 and N = 15. We see that for both cases the spectral dimension again

grows linearly for large t, and the spectral variances goes to zero. We see that for

3 Note that the volume of the space is not independent of this behaviour.
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Figure 12.: Spectral dimension and spectral variance for fuzzy spheres of size N = 5
and N = 15.

the N = 5 fuzzy sphere, spectral dimension barely starts to plateau at the value ∼ 2

for values of t between 0.1− 0.5, before dropping to zero as t→ 0. This drop to zero

is attributed to the finite structure of the fuzzy sphere being seen by the measures.

The spectral variance rises from zero to a value of ∼ 2 for a similar range of t before

dropping to zero. It is much clearer in the N = 15 case that both values are heading

to the value 2 as we decrease the value t, before both dropping to zero.

Tori

The spectral dimension and variance for a unit square torus with spin structure

(1, 1) is shown in fig. 13. This spin structure is chosen to aid in the comparison

between the continuum torus and the fuzzy torus as the unit square fuzzy torus has
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Figure 13.: Spectral dimension and spectral variance for the continuum square unit
torus with spin structure Σ = (1, 1).
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Figure 14.: Spectral dimension and spectral variance for square unit fuzzy tori of
sizes N = 10 and N = 30.

a Σ = (1, 1) spin structure. We see that for the continuum torus we see very similar

behaviour to that of the continuum 2-sphere. As the Dirac operator does not have

a zero eigenvalue for this spin structure the spectral dimension grows linearly for

large t again and the both the spectral variance and spectral dimension attain the

value 2 as t→ 0.

Figure 14 considers a unit square fuzzy torus. Larger matrix sizes have been used

than for the fuzzy sphere as the fuzzy torus spectrum is a worse approximation

to the continuum spectrum. Again the Dirac operator for this geometry does not

have a zero eigenvalue, so we see that the spectral dimension grows linearly with

large t. We also see that both measures fall to zero at t = 0 due to the finite nature,

however there is a clear spike for small but non-zero t. A similar phenomenon was

observed in [121] due to the discreteness in various approaches. In each case studied

the discretisation causes the eigenvalues to differ from the continuum values at the

largest values. This is also found for the fuzzy torus (see fig. 3). In fig. 15 we can see

that there is a small region around the origin where the the fuzzy torus eigenvalues

and continuum torus agree very well. But outside of this region the fuzzy torus

no longer follows the linear path of the continuum torus and is more sinusoidal.

Thus this spike does not seem to be a feature of the non-commutativity directly, but

a feature of the discreteness. We can interpret this bump as the spectral variance
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Figure 15.: Slices of fig. 3 to show how the eigenvalues deviate for large k, l. Both the
continuum and fuzzy tori have spin structure (1, 1) and the fuzzy torus
is of size N = 90.

measuring the high dimensional behaviour found in fig. 5 as we probe sufficiently

high energies.

For the N = 10, there is an inflection/saddle point of the spectral dimension that

occurs at a value ∼ 2 whilst the spectral variance rises from zero to a value quite

above the expected value of 2 and nearly attains 3 with no real plateauing. For

N = 30 however, the behaviour of the spectral dimension is similar to that when

N = 10, but now the saddle point has widened and resembles a plateau and occurs

at a value ∼ 2, the spectral variance now also develops a plateau ∼ 2 before spiking

for small t. Note that the height of the spike stays roughly constant, but becomes

sharper as N increases and shifts towards t → 0. This is in agreement with the

findings in [121, Figure 6 b)] for other discretisations of the torus (note that the

figures in this paper have a logarithm scale for t, which masks the fact that the

peaks sharpen as t→ 0).

In fig. 16 the spectral dimension and variance for two different shaped fuzzy tori

are shown. Their continuum counterparts are also shown. The unit square tori are

shown in green and the a = 3 tori are shown in pink. We have taken N = 90 for these

fuzzy tori due to the a = 3 fuzzy torus requiring that N be a multiple of ad− bc = 3.

We also need sufficiently high matrix sizes to have a well behaved spectral variance

as seen in fig. 14.
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Figure 16.: Figure (a) shown the spectral variance for two different fuzzy tori. The
green line shows the unit square fuzzy torus (a = d = 1, b = c = 0) and
the pink line shows the spectral variance for the a = 3 fuzzy torus.

The a = 3 torus can be viewed as identifying the opposites sides of a torus with

lengths d2 · 2π = 2π and a2 · 2π = 18π respectively. The fact that one of the axes of

the torus is nine times longer than the other has an interesting effect on the spectral

variance. A clear plateau at a value of ∼ 1 for relatively large t is developed. We

interpret this as the rectangular torus appearing one dimensional at low energies

and when using higher energies (probing a smaller structure of the space) we see

the higher dimensionality. This phenomena has been noted in [121] for the spectral

dimension of the Laplacian for differently shaped tori.

It should be noticed that the spike at low values of t is more pronounced and

wider for the a = 3 torus than for the unit square torus. This is due to the fact that

we comparing them both at N = 90 for both cases, where the a = 3 fuzzy torus has a

3-fold spectral degeneracy effectively reducing it to a N = 30 approximation. The 3-

fold degeneracy does not have an effect on the spectral variance as it is insensitive to

overall multiplicity factors as was discussed earlier. Figure 17 shows the comparison

between then spectral dimension for the N = 30 fuzzy square unit torus and the

N = 90 fuzzy a = 3 torus. It can be seen that the spike at low values of t for both

cases now are identical in width and height. This shows that non-square fuzzy tori

are worse approximations to the continuum than the unit square tori for a given

matrix size.
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Figure 17.: Spectral dimension for the square unit torus of matrix size N = 30 and
the fuzzy a = 3 torus with N = 90. Showing that the non square tori are
worse approximations to the continuum and that the breadth and height
of the spike at low values of t is tied to the accuracy of the approximation.

The proposal is thus, to use the spectral variance of a Dirac operator as a measure

of the dimension of a fuzzy space. This requires some justification as it is not always

clear what the dimension of a non-commutative space means. There are however

a number of properties we require of the dimension. For instance, if the spectrum

approximates the spectrum of a manifold (such as in the cases above), then the

dimension should agree with the topological dimension of the manifold up to an

appropriate level of approximation. For a manifold, the spectral dimension and

variance both measure the dimension of the space as t → 0, whereas for fuzzy

spaces we require to look at non-zero values of t. From the examples investigated

above, it is clear that we want to investigate where the spectral variance plateaus,

i.e. has an interval of t for which the spectral variance is approximately constant.

These plateaus can be viewed as mimicking the behaviour of flat space and show

there is an energy-scale where the spaces appear to have manifold behaviour.

The spectral variance of the fuzzy sphere has just one stationary point and is there-

fore the maximum of the graph. The value of the spectral variance at this maximum

agrees well with the continuum dimension, 2. For the torus the graph shows sur-

prisingly good agreement with the continuum spectral variance, and the value 2 for

a wide region, despite the fact that the actual spectra are substantially different. The

only marked difference is that the fuzzy torus has a higher peak at very small t. This
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3.3 spectral dimension and spectral variance

peak arises because the large eigenvalues of the fuzzy torus are much smaller than

those of the continuum torus, and start to follow a more sinusoidal path, which is

seen as following a Weyl’s law for a much higher dimension, see fig. 5. This example

makes it clear that it is not the global maximum that is important, rather it is the

larger region of t for which the graph is approximately constant that matters.

3.3.2 Spectral Variance of Random Geometries

With the analysis of the above section in mind, the spectral variance of the random

fuzzy spaces are now examined. The geometries of type (2, 0) and (1, 1) were exam-

ined in [61, 63], so it is interesting to add the understanding of their dimension. The

most important difference found in [63] is that the phase transition for the type (1, 1)

leads to much weaker correlations. The accompanying shift in behaviour is much

more gradual than for type (2, 0), hence no large jumps between different g2 values

for the type (1, 1) geometries are expected.

As mentioned in section 2.3.3 we have two options for calculating the spectral vari-

ance. We can calculate the ensemble average of the spectral variance, or alternatively

we can calculate the spectral variance of the averaged eigenvalues. We compare both

methods in fig. 18 for the type (2, 0) geometries. Note that the range of t values in

the plots is much larger than for the fuzzy sphere or fuzzy torus case. This is due

to the fact that the spectrum for the random geometries is bounded above by a low

number ∼ 2.

Note that for values of g2 away from the phase transition, the spectral variance

from the averaged eigenvalues and the ensemble average of the spectral variances

are very similar. While at the phase transition these two definitions produce slightly

different graphs. This is illustrated in the left-hand plots in fig. 18. The right-hand

plots of fig. 18 show the spectral variance for a sample of geometries taken from

the respective ensembles. This shows that the geometries that contribute to one

ensemble can be very different, particularly close to the phase transition. From the
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(b) Type (2, 0) g2 = −2.8 N = 10
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(c) Type (2, 0) g2 = −3.5 N = 10

Figure 18.: The left-hand plots are comparing the spectral variance as calculated
from the average eigenvalues, v〈λ〉s (t) with the average spectral variance〈

vλ
s (t)

〉
. In figure (a) the two lines are so similar that they almost can not

be distinguished in this plot. The right-hand plots are showing 10 uncor-
related examples of spectral variances from the ensemble of geometries.

graphs one can see that the variance of the spectral variance at a given value of t is

large, i.e. of order 1, at N = 10. A good question is whether this variance decreases

for larger matrix sizes. This will need further data to determine. Looking at the
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Figure 19.: The spectral variance of the averaged eigenvalues for the three types of
random geometry studied as the g2 value is varied, at the maximum
matrix size. Showing that the spectral variance undergoes a rapid change
of behaviour around the phase transition value.

plots in detail, the curves in fig. 18 (a) are qualitatively similar to each other, as are

the ones in fig. 18 (c). However at the phase transition, in fig. 18 (b), one sees curves

similar to both (a) and (c), suggesting that the system spends some time on each

side of the transition.

In fig. 19 the spectral variance of the averaged eigenvalues for the three types of

random geometry are shown for various values of the coupling constant g2 in the

action. The maximum matrix size available is used in an attempt to get behaviour

that is most like a continuum geometry.

A common trend for the plots is that before the phase transition the spectral vari-

ance it is mostly flat and around the value ∼ 1 and then rapidly grows at the phase

transition and becomes more peaked at the value of g2 grows. The type (1, 1) ge-
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Figure 20.: The spectral variance for the average spectrum of the type (1, 3) random
geometry at the phase transition value of g2 = −3.70 at N = 8 com-
pared with the N = 8 fuzzy sphere. The averaged spectrum rescaled so
the maximum eigenvalue agrees with the maximum of the fuzzy sphere
spectrum of the same matrix size.

ometry behaves slightly differently to the other types, which indicates that its phase

transition is of a different type to the (2, 0) and (1, 3) as was hinted at in [63]. For the

type (2, 0) and (1, 3) geometries, we see that the spectral variance has a maximum

close to the value 2 for g2 values near the phase transition, which agrees with the

behaviour found in [61, 63].

The fuzzy sphere introduced in [46] is a type (1, 3) fuzzy space, the same as the

random type (1, 3) geometries. In order to compare the random geometries to the

fuzzy sphere, we need to rescale the eigenvalues in an appropriate manner. In

fig. 20 the spectral variance is compared for the type (1, 3) random geometry at

the phase transition and fuzzy sphere, both with matrix size N = 8. The averaged

spectrum of the random geometry is rescaled so the maximum eigenvalue matches

the maximum eigenvalues of the fuzzy sphere. While the (1, 3) geometry and the

fuzzy sphere do not agree completely, they behave in a similar way. For the random

geometries the spectral variance rises slowly for small t. This is due to the fact that

the density of eigenvalues for the fuzzy sphere linearly rises for the near entirety

of its spectrum. However, the density of eigenvalues for the random fuzzy spaces

experiences as drop as we look at higher eigenvalues - as was shown in [61]. For the

random geometries the measures also experience a slower decay than they do the
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fuzzy sphere as t becomes large. This is because the lowest eigenvalue of the random

fuzzy geometries is typically much smaller than that of the fuzzy sphere, even after

rescaling. The reason for this is that the fuzzy sphere has degenerate eigenvalues due

to the spherical symmetry, while for a generic random fuzzy space the eigenvalues

have the minimal allowed multiplicity (which is 2 for (1, 3) geometries, as explained

in [61]), to maximise the entropy.

For type (2, 0), the maximum of the spectral variance rises with lowering g2, just as

for type (1, 3). As shown in fig. 19 (b), the spectral variance near the phase transition

(g2 = −2.8) has a maximum value close to 2 and is qualitatively similar to the fuzzy

sphere of a similar matrix size. This suggests a 2-dimensional geometry at the phase

transition but more work would be needed to substantiate this. For type (1, 1), the

spectral variance close to the phase transition (g2 = −2.4) reaches values above 2

and the overall shape of the curve is very different from that of the fuzzy sphere.

In particular, the curves just below and just above the phase transition are not as

different from the curve at the phase transition as they are for type (2, 0). This is

shown in fig. 19 (a).

These plots show that the tentative conclusion of [61] that the geometries behave

similarly does not survive more detailed examination. It confirms the differences

found in [63] but remains purely qualitative. To make quantitative judgements one

needs more tools, like the zeta-function distance to be introduced in section 3.5.

3.3.3 The maximum of the spectral variance

The average spectral variance curve is zero at t = 0 and t → ∞ and so has a maxi-

mum value. There has been only one local maximum in all of the cases of random

geometries studied here. This maximum value max(〈vs〉) is therefore a very crude

estimate of the dimension. The limitation of this approach is that the maximum

varies widely within each ensemble and so the interpretation is not so clear. Nev-

ertheless, it still proves instructive to plot max(〈vs〉) for the random geometries.
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Figure 21.: The maximum of the average spectral variance plotted against g2. The
vertical lines indicate the phase transition values as determined in [63].

Plotting the maximum value against g2 leads to the curves in fig. 21. The separate

lines in that figure are for different values of the matrix size N. For fixed N, the

maximum rises as g2 becomes more negative. It starts out around 1 and then rises

to large values after the phase transition. A particularly interesting feature is that

for types (2, 0) and (1, 3) the maximum of the spectral variance around the phase

transition seems to be close to 2 independent of N. An optimistic interpretation of

this would be that the behaviour at the phase transition shows a certain scale free-

dom and might remain the same in the large N, continuum, limit. For type (1, 1)

on the other hand the point of intersection seems to lie around g2 = −2.05 and

has a value of about 1.5. This g2-value is considerably below the phase transition

point determined in [63], however of the three geometries examined type (1, 1) had

the least clear signal at the phase transition, which makes the determination of the
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3.4 volume of a fuzzy space

phase transition in this case less certain. A priori, no reason exists to expect all of the

spectral variances to cross in close proximity. Therefore this intersection is another

marker of interesting behaviour at the phase transition.

3.4 volume of a fuzzy space

The volume of a Riemannian manifold, (M, g) is given by the following expression:

Vol(M, g) =
∫

M

√
−gddx (168)

and as such it inherently depends on the metric chosen. This way to define the vol-

ume also requires you to know the dimension of the manifold. Note that this notion

of “a volume” generalises the ordinary definition of volume for a three dimension

space to all dimensions, i.e. in 2-dimensions it is the area etc.

As spectral triples are to be thought of as the algebraic data for a compact Rie-

mannian manifold, there should be a notion of the volume of a spectral triple. As

the focus of this thesis is to look at spectral triples using just the spectrum of their

Dirac operators. This section is dedicated to investigating the different methods to

calculate the volume of a given geometry using the spectrum of a Dirac operator.

3.4.1 The Dixmier Volume

As the notion of a metric tensor does not survive the transition to noncommutative

geometry, other methods than performing the integral above need to be considered.

It was highlighted in the previous section that the heat kernel of pseudo-differential

operators defined over a compact Riemannian manifold contains the volume infor-

mation in its asymptotic expansion. This volume can be extracted by looking at the

residue of the rightmost pole of the spectral zeta function in eq. (147). For a fuzzy

space, there are a finite number of eigenvalues, and hence the sum in eq. (144) is
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finite, which automatically regularises the poles. However, as was discussed, there

is a method to locate the potential location of the right-most pole of the limiting

geometry when we take N → ∞ and recover a continuum geometry.

This was done by examining the finite steps in the Dixmier trace. The Dixmier

trace is a singular trace, i.e. it vanishes on operators of finite-rank (such as the

Dirac operators in a finite-spectral triple) and is described by a generalised limit

procedure. However for positive, compact operators, T whose ordered eigenvalues,

{λi}∞
i=1 grow as as λn ∼ o(n−1) then we have the following expression:

TrDix(T) = lim
j→∞

1
log(j + 1)

j

∑
i=1

λi (169)

To make the link with extracting the heat kernel expansion coefficients the following

theorem can be used:

Theorem 6 ([65] Proposition 4 p.306). Let µn(T) denote the n-th eigenvalues of an op-

erator T increasingly ordered. For positive, compact operators, T, whose order eigenvalues,

{λi}∞
i=1 grow as4 o(n−1) the following are equivalent:

• (s− 1)ζT(s)→ L as s→ 1+

• 1
log(j+1)

j
∑

i=0
µn → L as j→ ∞

where ζT(s) := Tr(Ts) =
∞
∑

n=0
µn(T)s

Examples of the operator T can be built from the Dirac operator or the Laplacian

on a manifold. So if we were to consider the Dirac operator on a compact Rieman-

nian spin manifolds, we would need to consider | /D| to make it positive. By using

Weyl’s law for Dirac operators we have that µn(| /D|) ∼ c(d)n1/d, where c(d) is con-

stant with respects to n. Thus we have to consider the operators | /D|−ds to get an

4 An operator with this property is called an infinitesimal of order 1.

106



3.4 volume of a fuzzy space

example of T. So we have that (s− 1)ζ| /D|(s) = (s− 1)Tr(| /D|−ds) this gives us the

following formula:

TrDix(| /D|−ds) = lim
s→1

(s− 1)Tr(| /D|−ds) =
1
d

lim
t→d

(t− d)Tr(| /D|−t) (170)

If we have instead the Laplacian (or the square of the Dirac operator /D2) we have

that µn(∆) ∼ c(d)n2/d, so to get an infinitesimal of order 1 we need to examine:

∆−d/2 the formula changes to the following:

TrDix(∆−
d
2 ) = lim

s→1
(s− 1)Tr(∆−ds/2) =

2
d

lim
t→d/2

(t− d/2)Tr(∆−t) (171)

Euler’s gamma function Γ(s) only has poles at the negative integers s ∈ {−1,−2, . . . },
so for k ≤ d we can rewrite eq. (146) to be the following:

ak = Γ(
d− k

2
)Ress= d−k

2
ζD2(s). (172)

It is assumed that

bj(d/2) =
1

log(j + 1)

j

∑
i=1

(λ2
i )
−d/2 (173)

is a good approximation for 2/d times the residue of the pole. Note that this requires

you to know the dimension of the space. It is possible to use this expression for

the Dixmier trace to give a new definition of a volume from a finite number of

eigenvalues, providing there is already an estimate d of the dimension,

VolDix(D) =
d
2
(4π)d/2

k
Γ
(

d
2

)
1

log j ∑
λ

(λ2
n)
−d/2 . (174)

For a manifold, the sum is over the j smallest eigenvalues and this gives the vol-

ume approximation considered above. For Dirac operators with a finite number of

eigenvalues (e.g., a fuzzy space), the sum is over all j eigenvalues and this gives a

definition of a volume measure for noncommutative spaces.
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This expression obeys the scaling property that for µ ∈ (0, ∞)

VolDix(µD) = µ−dVolDix(D) (175)

that also holds for the volume of a Riemannian manifold. However it is not additive,

VolDix(D1 ⊕ D2) 6= VolDix(D1) + VolDix(D2) (176)

in general. It is not additive even if D1 = D2, since log(2j) 6= log j. In this case,

D = D1 ⊕ D1 just doubles the multiplicities of the eigenvalues of D1. Thus the

definition is not consistent because taking two particles on a fuzzy space (which

means doubling the spinors and replacing k with 2k) would lead to a change in the

volume.

3.4.2 The Stern Volume

Due to the work of Stern [66], a new method for extracting the heat kernel coeffi-

cients is available. It is similar to that of the Dixmier trace, in that it expresses the

residues of the spectral zeta function as a limit of partial sums of particular func-

tions of the elliptic operator. It then utilises the same asymptotic expansion (141) as

was discussed above to relate these partial sums to geometric quantities. Partial sum

expressions for not only the rightmost pole of the spectral zeta functions, but also

the lower order poles were developed, culminating in the following theorem.

Theorem 5 ([66] Theorem 1). For any finite set {si}k
i=0 of decreasingly ordered reals and

for all elliptic operators, D with:

• Tre−tD possesses an asymptotic expansion as t → 0+ of the form ∑∞
i=0 cit−si , where

the set Π = {si} are decreasingly ordered reals.

• Π ∩ [sk, ∞) ⊂ {si}k
i=0
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then there exists a function F such that

Ress=sk Γ(s)ζD(s) = lim
Λ→∞

ε(Λ)sk ∑
λ∈Spec(D)

λ<Λ

F(λε(Λ)) (177)

for ε(Λ) := m log(Λ)/Λ for any m > s0 − sk.

However, it is shown in [66] that for our purposes, that if we find a function f

such that:

• f is piecewise continuous and supported in (1, ∞)

• f (t) decays rapidly as t→ ∞, specifically it is of order O(t−m) for all m ∈ R as

t→ ∞

•
∫ ∞

o t−si f (t)dt = 0 for i < k

•
∫ ∞

0 t−sk f (t) = 1

then it’s Laplace transform

F(s) =
∫ ∞

0
e−ts f (t)dt (178)

is such a function required in theorem 5 for the coefficient ak = Ress=sk Γ(s)ζD(s).

For our purposes by taking f = e−t for t ≥ 1, so that F(s) = e−1−s/(1 + s), and

then normalising5 by
∫ ∞

0 t−s0 f (t)dt = Γ(1− s0, 1) as to satisfy the above properties.

We have the following:

Corollary 1. If D is as in the above theorem with set Π bounded above by s0 ∈ R and if

ε(Λ) = log(Λ)/Λ we have that:

Ress=s0Γ(s)ζD(s) = lim
Λ→∞

ε(Λ)s0

eΓ(1− s0, 1)

 ∑
λ∈Spec(D)

λ<Λ

e−λ2 ε(Λ)

1 + λ2 ε(Λ)

 (179)

5 Γ(a, x) =
∫ ∞

x ta−1e−tdt is the upper incomplete gamma function.
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3.4 volume of a fuzzy space

The importance of this is it allows us to define a new volume measure based off of

a finite number eigenvalues, recovering the continuum definition in the infinite limit.

For the Dirac operator, D, we consider the above corollary for D2 and eq. (147):

VolSt
Λ (D) =

(4πε(Λ))d/2

ekΓ(1− d
2 , 1)

∑
λ∈Spec(D)

λ<Λ

e−λ2 ε(Λ)

1 + λ2 ε(Λ)
(180)

where ε(Λ) = (log Λ)/Λ. Stern’s result is then that for the Dirac operator of a man-

ifold, VolSt
Λ (D) → Vol(M) as Λ → ∞. This version of the volume converges faster

than the usual Dixmier trace, as it’s remainder term is of order O(Λs1−s0(log(Λ))s0−s1)

whilst the remainder for the Dixmier trace is of order 1/ log(N).

Note that Λ is a free parameter, and so when considering fuzzy spaces, it need

not coincide with the maximum eigenvalue available. It is not necessary for the

definition to insist that Λ ≥ |λ|max for all eigenvalues either. For compatibility with

the original formula Λ may be taken to be either the maximum |λ| or possibly an

estimate for it. This could be determined by a dimensionful coupling constant in

the action for a random fuzzy space, for example g4
−1/4 in eq. (122). This may also

prove useful when considering examples such as the fuzzy tori, whose spectrum is

wildly non-manifold like for large eigenvalues. By tuning this parameter we could

get a good convergence. However there is no systematic procedure developed yet.

The formula eq. (180) does not have the scaling property with Λ fixed, i.e.

VolSt
Λ (µD) 6= µ−dVolSt

Λ (D), (181)

as one might expect since Λ determines a maximum eigenvalue to consider. The

scaling property could be restored by simultaneously changing the value of Λ. The

formula is, however, additive providing that the dimension d is the same for both

geometries. In such cases one has

VolSt
Λ (D1 ⊕ D2) = VolSt

Λ (D1) + VolSt
Λ (D2). (182)
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Figure 22.: Volumes of the fuzzy sphere and fuzzy unit square torus. The volumes
of the continuum geometries are included for comparison.

3.4.3 Application to fuzzy spaces

The Fuzzy Sphere and Fuzzy Tori

Equations (174) and (180) can be used to calculate the volume of a fuzzy space,

assuming the dimension is known. To test these expressions, they can be applied

to the spectra of the fuzzy sphere and the fuzzy torus using d = 2 and Λ as the

maximum eigenvalue. This is shown in fig. 22, together with the volume of the

continuum sphere and the continuum torus. In the figure legend, eq. (174) is referred

to as the Dixmier volume and eq. (180) as the Stern volume. As expected, the Stern

volume converges much faster with N.

If the dimension parameter is not known, it can be estimated using the spectral

variance at a given value of the parameter t, which determines an energy scale. The

volume measures of the two fuzzy tori are shown in fig. 23. In this figure the matrix

size is kept fixed at N = 90 and the dimension is taken to be the value of the spectral

variance at the value t, i.e. d = vs(t). The plot is then shown against the parameter t.

As one would expect, this agrees with the values of the volume shown in fig. 22 (b)

when the spectral variance (fig. 16) is close to the value 2, which is approximately

the region 0.2 < t < 1. It also shows that the volume changes away from this quite

rapidly as the dimension estimator changes.
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Figure 23.: The volume measures of the two different tori considered are plotted
against t, using the dimension estimator d = vs(t) and N = 90 for both.

The Random Geometries

Testing the volume measures on random fuzzy geometries leads to several method-

ological conundrums. The first of these is the question of dimension. For the torus

and the sphere their topological dimensions are known, and can be used to calculate

their volume; no such information is available about the random fuzzy spaces. One

could use the spectral variance defined above to define the dimension in the volume,

but this is scale dependent. Even more troubling is that in the ensembles of random

geometries used in this work, the spectral variance fluctuates substantially, as can be

seen in fig. 18 on the right. The maxima of the spectral variances of the individual

Dirac operators have a large variance (of order 1), and moreover, the value of t for

these maxima also has a large variance. The question is, how could one average over

the volumes of different geometries if these geometries are of different dimension?

The average volume of a cube, a square and a line makes no physical sense, since

their volumes are different quantities. There are possible solutions to this problem,

such as measuring the volume of an average geometry, e.g. using the left hand spec-

tral variance curves in fig. 18. This could lead to a unique number for the volume

but it is not clear if that usefully represents the properties of the ensemble.
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The second issue arises due to the scaling that occurs in the action eq. (122). This

was mentioned in the context of dimensions and was shown not to affect the mea-

sures there. However the same cannot be said for the volumes. As the maximum

eigenvalue of the random geometries is heavily constrained to be ∼ 2 for every

matrix size. This means that comparing the volumes for different matrix sizes is

unlikely to produce meaningful results. However it still could provide an insight

into the overall behaviour of the geometries as the coupling constant g2 is varied. To

combat this scaling we make use of the knowledge expressed in eq. (175), that the

volume measure based upon the Dixmier trace scales inversely proportional to the

scaling imposed on the Dirac operator. Thus we will get a scaling dependent volume

from the Dixmier volume. We can force a Weyl’s law behaviour to the eigenvalues

by multiplying the spectrum by N1/d, where N is the total number of eigenvalues

available and d is the dimension as determined by the maximum of the spectral vari-

ance. This will force the largest eigenvalue to obey a Weyl’s law scaling, however the

lower eigenvalues need not follow the same scaling depending on their distribution.

Again this has conceptual problems as the dimension of these spaces fluctuates.

The volume of the averaged eigenvalues for the random geometries are investi-

gated in fig. 24. The dashed lines represent the Dixmier volume and the solid lines

represent the Stern volume for the different matrix sizes available. In both cases the

maximum of the spectral variance is used as a measure of the dimension. For the

Stern volume, Λ is taken to be the maximum eigenvalue, so we take into account

the entire spectrum available.

It can be clearly seen for the type (2, 0) and type (1, 3) geometries that the phase

transition marks a pivotal point in the behaviour of the simulation. Before the phase

transition (to the right of the blue line in the plots) the volumes are fairly stable for

the range of g2, then at the phase transition value the volumes grow rapidly.

For the type (1, 1) the volumes behaved differently, with the growth of the volumes

starting before the phase transition and continuing to grow until just after. This

behaviour is tied to the behaviour of the maximum of the spectral variance as shown

in fig. 21.
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Figure 24.: The Dixmier (dashed line) and Stern (solid line) volumes for the random
geometries. The averaged eigenvalues are used and the uncertainties are
propagated and shown.
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Figure 25.: The Stern and Dixmier volumes for the random geometries with the av-
eraged eigenvalues multiplied by N1/d. The uncertainties are more pro-
nounced so each volume has its own plot, the Stern volume is the left
hand plots and the Dixmier volume on the right.

The volumes of the geometries appear to grow with the matrix size, this is due to

the scaling that occurs in the action. To remove this feature we rescale the eigenval-

ues by N1/d as mentioned above, where N is the total number of eigenvalues. The

resulting volume measures are shown side by side in fig. 25. As a result of the scal-
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ing, the volume measures now take values in a much smaller range than compared

to the unscaled versions in fig. 24. The growth of the volumes with the matrix size

has been drastically reduced before the phase transition. The phase transition for

type (2, 0) and (1, 3) marks the sudden growth of the volumes, similarly to fig. 21,

where the phase transition marks the sudden growth of the maximum of the spectral

variance. One thing to note is that the uncertainties on the volume measures become

much more pronounced after the scaling. With the uncertainties for the type (1, 3)

geometry being so large for the Stern volume that it is difficult to make any con-

crete claims. However, the data available for the type (1, 3) random geometries is

worse. This is due to the increased dimension of its Clifford module, resulting in

more matrices Hi, Lj in matrix model, and the action therefore becoming much more

complicated as the Dirac operator has more terms. This was discussed in [63].

However, the type (2, 0) geometries has the clearest indicator of a phase transition

in [63] and has low uncertainties associated to the averaged spectra. This geometry

also shows the clearest behaviour, with the volume being roughly constant before

the phase transition once the matrix scaling has been accounted for. At the phase

transition we see the volume measures begin to spike. The behaviour of the Stern

and Dixmier volumes then differs slightly after the phase transition, with the Stern

volume reaching a maximum just after the phase transition and then decays to zero

volume. The Dixmier volume however reaches a maximum at the same value of g2

however the decay is much slower. This behaviour can be seen in the type (1, 1)

geometry plots also. However, the uncertainties in the Stern volume for the type

(1, 3) geometries are too wild to make any conclusions. With the improvement of

the simulation speed, larger matrices and more geometries can be examined for each

geometry, which would be needed to examine the larger Clifford type geometries.

The volumes of the random geometries is then a difficult object to calculate, as

it depends heavily on the dimension you choose. Using the maximum of the spec-

tral variance as the dimension inherently links the volume to the behaviour of the

dimension. Thus the information gained by examining the volumes measures is not

independent from the information gained from examining the dimension. However
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it is still an interesting fact that the volumes appear to change behaviour, along with

the spectral variance, at the phase transition. For future investigations the spectral

variance and volume measures could be used in the action potential as they are spec-

tral. Thus it could be possible to fine tune the simulation to give geometries with

specific dimensions or volumes, and fluctuate other geometries quantities.

3.5 the zeta distance

We introduce one final spectral measure to compare geometries that is equally well

defined in both the continuum and fuzzy geometry cases.

In [67] a distance between two geometries was defined using the ratio of the spec-

tral zeta functions of the Laplace-Beltrami operator. This definition is adapted here

to use Dirac operators instead. If we let D1, D2 be Dirac operators and ζ1, ζ2 their

zeta functions, as in eq. (144). A real number γ is chosen so that it is greater than

the real part of any pole of either zeta function.

The zeta distance between the geometries is defined to be

σ(D1, D2) = sup
γ≤s≤γ+1

∣∣∣∣ log
(

ζ1(s)
ζ2(s)

)∣∣∣∣ . (183)

Note that the zeta functions are positive for the relevant values of s. The distance

has the property that σ(D1, D2) = 0 if and only if the spectra are the same [67]. It

also obeys the triangle inequality

σ(D1, D2) + σ(D2, D3) ≥ σ(D1, D3). (184)

The definition uses the closed interval [γ, γ + 1] but the 1 is just for convenience and

in fact any finite interval with a suitable lower limit γ will do. The definition also

holds for finite spectra, in which case there is no restriction on γ. It can even be used

to compare a finite spectrum to an infinite one. Several examples are examined in

detail in the following sections.
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3.5 the zeta distance

3.5.1 Convergence of fuzzy spectra to the continuum

The distance measure can be used to define the convergence of spectra. If σ(Dn, D)→
0 for a sequence of Dirac operators {Dn}, then ζn(s) → ζ(s) for each s ∈ [γ, γ + 1],

providing the poles all lie below γ. According to [67, Thm 3.2], this implies that the

spectra and multiplicities converge pointwise in a suitable sense. The converse sit-

uation is examined here using the sphere and torus as concrete examples. In these

examples, the spectra converge pointwise and this implies that the zeta functions

converge pointwise in s. However, this is not quite good enough to show that σ

converges to 0, as this needs uniform convergence in s.

Lemma 2. Let ζ 6= 0. If ζn → ζ as n→ ∞ uniformly in [γ, γ + c] for any constant c > 0,

then σ(ζn, ζ)→ 0.

Proof. Suppose |ζn(s)− ζ(s)| < ε for all n > n0 and all s ∈ [γ, γ + c]. Then∣∣∣∣log
ζn

ζ

∣∣∣∣ ≤ ∣∣∣∣ζ − ζn

ζ

∣∣∣∣ ≤ ε

ζ
. (185)

Hence σ(ζn, ζ) ≤ ε sups 1/ζ(s) = ε/ mins ζ(s). Hence the distance σ converges to

zero.

The fuzzy spheres define a sequence of Dirac operators Dn, with n = N, the

matrix size. This is compared to the Dirac operator D on the spin bundle of S2

tensored with C2, so that the multiplicities are doubled. Then the Dn have the same

spectrum as D but with a cut-off. Therefore ζn(s) → ζ(s) as n → ∞ for s > 1 and

this is uniform in [γ, γ + 1] for any γ > 1. Therefore σ(Dn, D)→ 0. This conclusion

generalises to any sequence of fuzzy spaces for which the spectra are obtained by

truncating the spectrum of the limiting geometry.

Now let Dn be a sequence of fuzzy unit square tori with n = N, and D the con-

tinuum torus, again with multiplicities doubled. Here, the spectra do not coincide

but converge pointwise, when ordered in increasing value. The fact that the zeta

functions converge uniformly for γ > 1 is now shown.
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3.5 the zeta distance

For the fuzzy unit square torus, the spin structure is Σc = (1, 1). Therefore the

same spin structure is used for the continuum torus and its eigenvalues are labelled

with (k, l) ∈ A∞ = Z2 + (1/2, 1/2). Let AN ⊂ A∞ be the subset such that −N/2 ≤
k, l < N/2. This indexes the eigenvalues of the fuzzy torus of size N exactly once

each, ignoring the fourfold degeneracy of the squared eigenvalues for each (k, l) (see

equation eq. (114)). The difference in the two zetas is

∆ζ = ∑
(k,l)∈AN

([k]2 + [l]2)−s − ∑
(k,l)∈A∞

(k2 + l2)−s, (186)

where [k] is the q-number introduced in the introduction. All that is left to prove is

that ∆ζ → 0 as N → ∞, uniformly on [γ, γ + 1], for any γ > 1.

To show this convergence, the comparison is split into two regions. The fuzzy

zeta spectrum is similar in value to the continuum torus for small [k], [l] but for

large [k], [l] the spectra differ quite drastically. This can be seen in fig. 3. Define

AM ⊂ AN to be the region with |k|, |l| < M for some M such that 1 ≤ M ≤ N/2.

Then different comparisons are used for AM and AN \ AM. The difference in the

two zetas is thus

∆ζ = ∑
AM

([k]2 + [l]2)−s − (k2 + l2)−s + ∑
AN\AM

([k]2 + [l]2)−s − ∑
A∞\AM

(k2 + l2)−s

(187)

These three sums are investigated in turn. For the first term,

([k]2 + [l]2)−s − (k2 + l2)−s =

(
sin2 x + sin2 y

sin2 z

)−s

−
(

x2 + y2

z2

)−s

(188)

with x = πk/N, y = πl/N, z = π/N. The Taylor expansion for this is

(
sin2 x + sin2 y

sin2 z

)−s

=

(
x2 + y2

z2

)−s (
1 + s

(
O(x2 + y2) + O(z2)

))
(189)
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3.5 the zeta distance

providing x, y and z are in a sufficiently small region. This requires that M/N be

sufficiently small.

Putting this estimate into the sum gives

∑
AM

([k]2 + [l]2)−s − (k2 + l2)−s ≤ s ·∑
AM

O
(
(k2 + l2)1−s

N2

)
≤ s O(M2/N2). (190)

The second inequality follows from the fact that s > 1 and so the summand is

greatest for k, l = ±1/2. This shows that as long as M/N → 0, the first piece of

expression (187) converges uniformly to zero.

The second term in eq. (187) is examined now. Let sinc(x) = (sin x)/x ≤ 1. The

term is

∑
AN\AM

([k]2 + [l]2)−s ≤ N2

(
sin πM

N
sin π

N

)−2s

= N2M−2s

(
sinc πM

N
sinc π

N

)−2s

(191)

≤ N2M−2γ

(
sinc πM

N
)−2(γ+1)(

sinc π
N
)−2γ

(192)

Thus as long as M is chosen so that NM−γ → 0 as N → ∞ as well as the previous

condition M/N → 0, the bound on the right converges to zero. Hence this sum also

converges uniformly to zero.

The last piece is the one arising from the continuum zeta. This converges to zero

as long as M → ∞ since it is the tail of a convergent series. The convergence is

uniform since

∑
A∞\AM

(
k2 + l2

)−s
≤ ∑

A∞\AM

(k2 + l2)−γ, (193)

a bound independent of s. All of the conditions on M can be satisfied by taking

M = (N/2)a for 1/γ < a < 1.

Given the above convergence for the fuzzy sphere and fuzzy torus, some numer-

ical results are presented in fig. 26, where γ = 1.5 to avoid numerical instabilities

close to the singularity at s = d/2 = 1. The left-hand plot shows the results for the
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Figure 26.: Spectral distances between fuzzy spaces of different matrix size N and
the continuum space, using γ = 1.5. The sphere is on the left and the
torus on the right. The dark blue line shows that the distance of the fuzzy
space to the continuum space. The green line denotes the distance of the
fuzzy space at N = 10 to the fuzzy space at arbitrary N. The brown line
shows the distance between the spaces at N and N + 1.

fuzzy sphere and the right-hand plot for the fuzzy torus. The plot for the torus has

a noticeable kink in the line comparing the continuum torus to the fuzzy torus at

N = 26. This feature arises because at this point the maximum of the logarithm flips

from the upper end of the interval [γ, γ + 1] to the lower end of this interval.

3.5.2 Distances between random geometries as g2 varies

To apply the distance function to random geometries, the first step is to pick a value

of γ. Since the random geometries do not have a simple dimension measure or any

poles in the ζ function, the easiest choice is to explore the distance for a few values

of γ that would be compatible with the range of dimension found using the spectral

variance. For the exploration here γ = 0.5, 1.0, 1.5, 2.0 are used, which are suitable

considering the dimension values found in fig. 21. The choice of γ influences the

relative weight given to the low or high energy part of the spectrum, with lower γ

emphasising the higher energy part of the spectrum.

Calculating this on the random fuzzy spaces requires some form of averaging,

either over distances or over geometries. Calculating averages over quantities in-
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Figure 27.: Distance of random geometries of type (2, 0) with varying g2 from the
geometries at g2 = −2.5,−3.5

volving the zeta function is plagued by instabilities which arise from terms λ−s
0 if

the eigenvalue λ0 with the smallest absolute value fluctuates close to 0. This makes

it more practical to calculate the distances of the averaged spectra. Using this, the

distance function can be applied to random geometries, obtaining some interesting

results.

A simple test is to calculate the distance between geometries of the same type at

different g2. This is shown in fig. 27 for type (2, 0), where the distance from the

geometries with g2 = −2.5 and g2 = −3.5 as reference points is shown. The choice

of γ changes the resulting distances but the relative distances are qualitatively the

same. In particular, the geometries above the phase transition at g2 = −2.8 are more

similar to the geometry at g2 = −2.5 while those below the phase transition are

more similar to the geometry at g2 = −3.5. The error bars on all distance measures

are calculated by propagation of uncertainty starting from the errors on the average

eigenvalues.

3.5.3 Measuring the distance from the fuzzy S2

The spectral distance measure can be used to investigate whether the spectra of

the random geometries are close to the fuzzy sphere. As demonstrated in [67], the
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3.5 the zeta distance

spectral distance measure is also sensitive to size differences between geometries.

However for the random fuzzy spaces their size is of less interest than the question of

whether they resemble a fuzzy sphere of any size. Thus to compare the geometries,

the average spectra are scaled so that the maximum eigenvalues are equal. Physically

this rescaling should correspond to fixing the Planck scale for the geometries to

agree.

The resulting distances between the random geometries and the appropriate fuzzy

spheres are shown in fig. 28. These are encouraging, since they align with the hope

that the geometries close to the phase transition are similar to the fuzzy sphere. For

all three types the minimum distance to the fuzzy sphere is for the geometries with

g2 one step away from the phase transition. For type (1, 1) it is for g > gc, and for

types (2, 0) and (1, 3) it is for g < gc.

3.5.4 Measuring the distance between type (1, 1) and type (2, 0)

One of the aims in doing this additional analysis was to understand the difference

between the geometries of type (1, 1) and (2, 0) better. For this a distance measure is

very useful. When comparing geometries of different types, in addition to choosing

the rescaling, there is freedom in which g2 values to compare with each other.

The simplest option is to compare the geometries at the same value of g2, dis-

regarding the fact that the geometries have different phase transition points. The

difference found in this way is dominated by whether the geometries are in the

same phase or not, as seen in fig. 29 (a). The distances measured do not change

much when the eigenvalues are rescaled to λmax = 1. This is because the maximum

eigenvalues in both geometries are very similar.

When comparing at fixed g2 value, the difference between the geometries is largest

between g2 = −2.8, . . . ,−2.5 which is the region in which type (1, 1) is already tran-

sitioned, while type (2, 0) is not yet. After g2 = −2.8, when type (2, 0) transitions,

the distance between the geometries becomes much smaller.
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3.5 the zeta distance

The other option is to, is to compare the geometries at a constant distance from

their phase transition g2 − gc, shown in fig. 29 (b). This requires the assumption

that the determination of the phase transition for both geometries is correct, which

introduces an additional possible error. The overall distance between the geometries

in this measure is smaller than before. It is also much larger when comparing the

geometries before they have transitioned as opposed to comparing those in that that

are after the phase transition The geometries after the phase transition have distance

close to 0, while before the phase transition, their distance is quite large.
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Figure 28.: Distance between the fuzzy sphere and random fuzzy geometries, with
the spectra rescaled such that their maximal eigenvalues agree. For the
geometries of types (1, 1) and (2, 0) only half of the multiplicity of the
fuzzy sphere eigenvalues were used to compare to geometries with the
same number of eigenvalues.
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Figure 29.: The spectral distance between geometries of type (1, 1) and type (2, 0)
with different rescalings. Plotted for γ = 1.
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4
S Y M M E T R I E S , C O A D J O I N T O R B I T S A N D F U Z Z Y S PA C E S

This section is concerned with investigating the construction of fuzzy spaces that

possess Lie group symmetries. The fuzzy sphere is a key motivating example as it

possesses an action of the Lie group SO(3). The fact that the fuzzy sphere possesses

a Lie group symmetry whilst having a finite Dirac spectrum is an attractive feature

for a quantum gravity theory. Identifying the maximum eigenvalue of the Dirac op-

erator as the maximum possible energy scale of the geometry, is akin to the existence

of a minimum Planck length scale. Such an interpretation is expected to regularise

the divergences that appear in the quantum field theories one could define over such

spaces. As having a spacetime that possesses a Lorentz invariant metric is a funda-

mental principle of general relativity, exploring the fuzzy spaces that are invariant

under Lie group symmetry seems a useful avenue of investigation.

The sphere is a particularly special space as it has many different descriptions in

differential geometry, with varying levels of structure. However the focus of this

thesis will be to view the sphere as a coadjoint orbit of the Lie group SU(2). This

provides the sphere many geometric structures, such as a canonical symplectic struc-

ture, a Kähler structure, and allows it to be viewed a special type of homogeneous

space which makes its symmetry explicit. It also allows us to describe it in a Lie

algebraic manner, which lends itself to the noncommutative geometry setting. As

fuzzy spaces are generalisations of spin manifolds, we need to outline how a mani-

fold possessing a Lie group symmetry, manifests on the spinor bundle. The details

of how the Lie group symmetry interacts with the Dirac operator is then given.
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4.1 differential geometry of coadjoint orbits

The aim of this chapter is to investigate how much the presence of a Lie group

symmetry restricts the possible choices of Dirac operators on a fuzzy space as given

by eq. (79) and eq. (80).

4.1 differential geometry of coadjoint orbits

In this section we introduce the necessary differential geometry to define a spinor

bundle over a coadjoint orbit. But first we need to describe a coadjoint orbit.

4.1.1 Coadjoint Orbits of Semisimple Lie Groups

Definition 34. Let G be a Lie group and let g be it’s Lie algebra, we say that g is

semisimple if it does not contain any non-abelian, non-trivial ideals. If G is a Lie

group with semisimple Lie algebra we say that G is also semisimple.

Definition 35. A torus subgroup of a Lie algebra is a connected, compact, abelian

subgroup. A maximal torus, T, is a torus proper subgroup that satisfies the standard

maximal property that there are no proper subgroups, T′ of G that contain T with

T 6= T′.

Definition 36. Let G denote a compact semisimple Lie group, take the Lie algebra of

G to be g. A Cartan subalgebra of g is the Lie algebra of a maximal torus subgroup,

T, of G.

A Cartan subalgebra can be viewed as the maximal set of commuting elements of

g. We will denote the vector space dual of g as g∗, which we will refer to as the dual

Lie algebra (even though it isn’t a Lie algebra itself).

Definition 37. The adjoint action of a Lie group, G on itself or it’s Lie algebra, g is

denoted by Ad and is defined as:

Adg(g′) = gg′g−1, Adg(X) = gXg−1 (194)
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for all g′ ∈ G and X ∈ g. The adjoint action of the Lie algebra of a Lie group on itself is

denoted by ad and is defined to be:

adX(Y) =
d
dt
∣∣
t=0Adexp tXY = [X, Y] (195)

for all X, Y ∈ g. The coadjoint action of G on g∗ is denoted Ad∗ and defined:

Ad∗gα(X) := α(Adg−1(X)) = α(g−1Xg) (196)

for every element α ∈ g∗ and every X ∈ g.

Note that if G is connected we have that Ad(eX) = ead(X) for every X ∈ g [122].

Definition 38. The Killing form on a Lie algebra g is defined to be B(X, Y) =

Tr(adXadY) for X, Y ∈ g.

Note that when g is semisimple then B is non-degenerate and when G is also

compact Lie group, then B is negative definite [123]. We can also define g to be called

compact if its Killing form is negative definite for this reason. It is then useful to

define Kil = −B, then we have a positive definite form on a compact semisimple Lie

algebra g. We can then identify g∗ using this new form Kil to g under the following

identification: X̃ = Kil(X, ·). The Killing form, B, and therefore the bilinear form Kil

satisfy the property that

Kil(adXY, Z) = Kil([X, Y], Z) = Kil(Y, [Z, X]) = −Kil(Y, adXZ) (197)

Now for every point µo ∈ g∗ there exists some Zo ∈ g such that µo(X) = Kil(X, Zo)

for all X ∈ g. We can then form the orbit under the coadjoint group action defined

as

Ad∗gµo(X) := µo(Adg−1 X) = Kil(Adg−1(X), Zo) = Kil(g−1Xg, Zo). (198)
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Denote this orbit by Oµo = {α ∈ g∗
∣∣ ∃g ∈ G s.t. Ad∗g(µo) = α}. Using the cyclic

nature of the trace we can see that for semisimple Lie algebras we have that the

coadjoint orbit of a point µo ∈ g∗ is equivalent to the adjoint orbit of it’s identified

point Zo ∈ g (via Kil).

Let K denote the stability subgroup of G for the coadjoint action of a point µo ∈ g∗,

i.e. K = {k ∈ G | Ad∗k µo = µo}. The map x 7→ Ad∗x(µo) defines a diffeomorphism be-

tween G/K and the coadjoint orbit Oµo . Using this diffeomorphism, we can equally

work with the homogeneous space G/K or the orbit itself.

Definition 39. A manifold M with a left G action is said to be a homogeneous space

if the action is transitive, i.e. for every x, y ∈ M there exists a g ∈ G such that

g · x = y.

As the action is transitive, we can take any point x ∈ M and the orbit space G · x
which is equal to M. By the orbit-stabiliser theorem of group theory we have a

bijection between G/Gx and G · x = M, where Gx is the stabiliser of the point. The

following theorem allows us to adapt this to the setting of manifolds.

Theorem 6 ([124]). Let G be a Lie group, K a closed subgroup of G. Let G/K be the space

of left cosets with the natural topology. Then G/K has a unique smooth structure. If M

has a transitive action of G, then the stabiliser, Gx of any point p ∈ M is closed and M is

diffeomorphic to G/K.

The projection π : G → G/K which send g ∈ G to the equivalence class [gK] forms

a fibre bundle (see [124]). Viewing the coadjoint orbit as a homogeneous space, we

can take a new view of the space. We shall view it as a principal K-bundle, with

total space G, fibres K and base space will be G/K.

4.1.2 Homogeneous Bundles Theory

Definition 40. A fibre bundle π : P→ B with fibres F which has a right action ρG of

a Lie group G on P is called a principal G-bundle if we have the following:
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• The action is free. This means that if ∀x ∈ P we have that x · g = x =⇒ g = e.

• The group acts transitively on the fibre of the bundle. This means that ∀p, p̃ ∈
π−1({x}) =: Px then there is some g ∈ G such that p = p̃ · g.

• The local trivialisations, ψUx satisfy the following conditions. That ψUx(p) =

(π(p), φUx(p)) where φ : π−1(Ux) → G is G-equivariant, i.e. that φUx(p) ·
g = φUx(p · g). This can be viewed as requiring the following (idUx × µG) ◦
(ψx × idG) : π−1(Ux)× G → U × G (where µG is the group multiplication) is

equivalent to ψU ◦ ρG : π−1(Ux) × G → U × G. I.e. the following diagram

commutes

π−1(Ux)× G Ux × G× G

π−1(Ux) Ux × G

ρG

ψx×idG

idUx×µG

ψx

We say that two principal G bundles π1 : P1 → M and π2 : P2 → M are equivalent

if there exists a homeomorphism f : P1 → P2 that is G equivariant, i.e.

P1 P2

M

π1

f

π2

commutes and f (p · g) = f (p) · g for every g ∈ G.

Proposition 5. Let G be a Lie group and K a closed subgroup, let π : G → G/K denote the

smooth surjective projection that sends elements to their equivalence class under the quotient

in G/K. Then π : G → G/K is a principal K-bundle.

Proof. • The group, K acts freely on the total space: Freely acting group means that

∀x ∈ G we have that x · k = x implies that k = eK. So given that K is a closed

subgroup of G, we can include K in G in the standard way, then this property

is satisfied by the uniqueness of the identity element, eG in G. Then as eK = eG

we have shown this to be true.
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• The group acts transitively on the fibres: We need to show that ∀g, g̃ ∈ Gx =

π−1({[xK]}) there is some element k ∈ K such that g = g̃ · k. So as g ∈ Gx by

the definition of an equivalence class, g = x · k. Also g̃ = x · k̃, so x = g · k−1 =

g̃ · (k̃)−1. So we have that g = g̃ · (k̃)−1 · k.

• We need to show the existence of ψ : π−1(U) → U × K, p 7→ (π(p), φU(p)),

where φU is K-equivariant: The existence of local trivialisations is shown in [124],

which allows us to find local sections for every point in G/K. Let [xK] ∈ G/K,

then let Ux be a neighbourhood of [xK] in G/K. Let s : Ux → G be a local

section, then we have that the following map ψ : Ux × K → π−1(Ux), (p, k) 7→
s(p) · k, is K equivariant, i.e. ψ(p, k) · g = s(p) · k · g = s(p) · (kg) = ψ(p, kg).

With this new perspective we can the make a very useful link between the group

level description and the lie algebra level. We do this by taking the differential of the

map π : G → G/K at the identity element e ∈ G. We shall set o = π(e) = [eK]. We

have that the induced linear map dπe : TeG ' g → To(G/K). Which by using the

first isomorphism theorem from linear algebra we have an isomorphism between

im(dπe) = To(G/K)1 and TeG/ker(dπe).

It is worth explicitly showing that ker(dπe) ' k (as vector spaces). We shall do

this by showing that elements of k ' Te(K) are in ker(dπe) and then we show that

ker(dπe) ⊂ k.

So given Xe ∈ TeK ' k (a vector tangent to K), we can form a map α : [0, 1] → K

such that α(0) = e and α′(0) = Xe, i.e. let α(t) = exp(tXe). We can then view K

as a subgroup of G and consider the maps α as curves in G. Then we have a curve

α(t) ∈ K ⊂ G and α(0) = e thus π(α(t)) = π(e) = o for all values of t. So a vector

tangent to this curve must have that dπe(Xe) = d(πe ◦ α)(0) = d(o) = 0o. So we

have that k ⊂ ker(dπe) = {Xe ∈ TeG | dπe(Xe) = 0π(e)}.

1 the map dπp is surjective for any p ∈ P as it is a necessary condition for the existence of local
trivialisations in the bundle structure.
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Now we take Xe ∈ ker(dπe) so we have that dπe(Xe) = 0o. Let us choose a curve

in G such that α(t) ∈ G, α(0) = e and α′(0) = Xe. Then we have that if dπ(Xe) = 0

then we have that (π ◦ α)′(0) = d
dt (π(α(t))|t=0 = 0. So we have that π(α(t)) = const,

but π(α(0)) = π(e) = o. So we have that π(α(t)) = o for all values of t. So Xe ∈ k.

So we have that the tangent space to G/K at the element o = π(e) is the vector

space g/k

To(G/K) = im(dπe) ' TeG/ker(dπe) = g/k. (199)

Definition 41. A homogeneous space, M ∼= G/K is reductive if there exists a subspace

m of g such that g = k⊕m where Adk(m) ⊂ m for all k ∈ K.

Note that for reductive homogeneous spaces we have that ToG/K ∼= m.

Let τg : G/K → G/K denote the diffeomorphism that sends xK 7→ gxK. Note that

τk(o) = o for all k ∈ K. Taking the differential of this map at o provides a linear

transformation of the tangent space.

Definition 42. The isotropy representation of the homogeneous space G/K is the ho-

momorphism:

Io : K → GL(ToG/K) (200)

defined by k 7→ (dτk)o, where o = eK the identity coset.

The following proposition explains why the adjoint action plays a vital role in the

study of homogeneous spaces.

Proposition 6 ([125]). The isotropy representation of a reductive homogeneous space G/K

is equivalent to the adjoint representation of K in m.

Proof. The two representations are equivalent if the following diagram is commuta-

tive:

m m

To(G/K) To(G/K)

Adk

dπe|m dπe|m
Io(k)=(dτk)o
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where the downwards arrows are the canonical isomorphism To(G/K) ∼= m given

above, the upper right arrow is the restriction of the adjoint action to K and using

the fact that the space is reductive so Adk(m) ⊂ m. We show this by calculating

explicitly, given Y ∈ m we have that :

((dπe)o ◦ Adk)(Y) = (dπe)o(Adk(Y)) =
d
dt
∣∣
t=0(π ◦ exp(tAdk(Y))) (201)

=
d
dt
∣∣
t=0(exp(tAdk(Y)K)) =

d
dt
∣∣
t=0(k exp(tY)k−1K) (202)

= (dτk)o ◦
d
dt
∣∣
t=0 exp(tY)K)) = (dτk)o ◦ (dπe)o(Y) (203)

Definition 43. Let M = G/K be a homogeneous space, a metric g on M is called left

G-invariant if for each g ∈ G the diffeomorphism τg : G/K → G/K, τg(xK) = gxK

is an isometry, i.e. we have that go((dτg)o(X), (dτg)o(Y)) = go(X, Y) for every X, Y ∈
To(G/K) ∼= m.

The following theorem allows us to concern ourselves with specific inner products

on the space m instead of Riemannian metrics on G/K.

Theorem 7 ([126], p.200). Let G/K be a reductive homogeneous space with Ad(K)-invariant

decomposition of g = k⊕m, then there is a one-to-one correspondence between:

• left G-invariant Riemannian metrics on M

• Ad(K)-invariant inner products 〈, 〉 on m

Remark 6. There is a similar statement for pseudo-Riemannian metrics, where we relax the

inner product to a non-degenerate bilinear form on m.

Proposition 7. Given a reductive homogeneous space G/K with reductive decomposition

g = k⊕m. The positive definite bilinear form Kil is Ad(G)-invariant and it’s restriction to

m is Ad(K) invariant.
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Proof. Kil(Adk(X), Adk(Y)) = Kil(kXk−1, kYk−1) = Tr(adkXkadkYk−1). Note that

adkXk−1(Y) = [kXk−1, Y] = kXk−1Y − YkXk−1 = k(Xk−1Yk)k−1 − k(k−1YkX)k−1 =

Adk ◦ adX ◦ Adk−1(Y). So we have that

Kil(Adk(X), Adk(Y)) = Tr(AdkadX Adk−1 AdkadY Adk−1) (204)

and as Ad is a group homomorphism and the trace is cyclic we have the desired

result that Kil(Adk(X), Adk(Y))) = Kil(X, Y). As we have take a reductive decom-

position for m, we have that the result.

As the aim is to examine differential operators over coadjoint orbits (viewed as

homogeneous spaces) we need to introduce the concept of associated bundles and

their sections.

Definition 44. If π : E → M is a principal G-bundle and V is a space with a left

action of G, ρ : G × V → V, then we can form the associated bundle, E×ρ V, which

has total space (E × V)/∼, where (p, v) ∼ (q, w) if there exists g ∈ G such that

(p, v) · g := (p · g, ρ(g−1)v) = (q, w). If we take V to be a vector space which carries

a linear representation of G we obtain an associated vector bundle.

Every finite dimensional vector bundle, π : E → M of rank n can be viewed as

an associative vector bundle of a principal GL(n)-bundle over M [70]. There is a

particularly useful result relating the sections of an associated bundle to equivariant

maps.

Proposition 8 ([70]). Let π : E → M be a principal G bundle, let V have a left action of

G, denoted by ρ, and let E×ρ V be the associated bundle. Let Γ(M, E×G V) be the space

of smooth sections of the associated bundle. Let C∞(E, V)G be the space of maps s : E → V

such that s(p · g) = ρ(g−1)s(p). There is a natural one-to-one correspondence between

Γ(M, E ×ρ V) and C∞(E, V)G given by sending the map s ∈ C∞(E, V)G to sM(x) =

[p, s(p)], where p is any element of π−1(x) and [p, s(p)] is the equivalence class that the

element of (p, s(p)) ∈ P× G belongs to.
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Proof. First we show that this map is unambiguous, i.e. if we choose some other

point p′ ∈ π−1(x) then we have that s is mapped to [p′, s(p′)]. As G acts transitively

on the fibres we have that p′ = p · g for some g ∈ G. So

[p′, s(p′)] = [p · g, s(p · g)] = [p · g, ρ(g−1)s(p)] = [p, s(p)] (205)

where the last equality is due to the definition of the associated bundle. The map

is surjective because if we are given sM ∈ Γ(E×G V), we have that sM(x) = (p, v)

for some p ∈ π−1(x) and v ∈ Vx, we can define s to equal v at p. This is well

defined because if sM(x) = (q, w) instead, we have that q = p · g then we just set v =

ρ(g)w. We check that this map s(p · g)g−1 · s(p). Suppose s(pg) = ṽ so we have that

[(pg, ṽ)] ∈ Vπ(pg) = Vπ(p). Thus taking the representative (pg, ṽ) · g−1 = (p, ρ(g)ṽ)

we have that s(p) = ρ(g)ṽ so ρ(g)−1s(p) = s(pg). To show that the map is injective,

consider two maps s, s′ such that s 6= s′. So there exists p ∈ E such that s(p) 6= s′(p),

thus we have that choosing x with p ∈ π−1(x) we have that sM(x) 6= s′M(x).

Definition 45. Let π : E → M be a fibre bundle and let G be a Lie group. We say

that the fibre bundle is G-equivariant if G acts smoothly on the left of both E and M

and we have that π(g · x) = g · π(x) for all g ∈ G and all x ∈ E. If π : E → M is a

vector bundle we also require that g· : Ex → Eg·x is linear.

Considering the bundle π : G → G/K we have a left G action on both G by left

multiplication and on G/K by sending xK to gxK. These actions satisfy π(g · x) =
gxK = g · xK = g · π(x), thus this principal K-bundle is also G-equivariant. Now

that given an associated bundle to π : G → G/K, denoted G×ρ V → G/K, is also G-

equivariant with the left action of G on G×ρ V being defined as g′ · [g, v] := [g′g, v].

Thus we have that π(g′ · [g, v]) = π([g′g, v]) = g′g = g′ · π([g, v]).

Definition 46. Let M be a homogeneous space of the Lie group G, so that M ∼= G/K

for some closed subgroup, K, of G. A homogeneous fibre bundle over M ∼= G/K is a G-

equivariant fibre bundle over M where the action of G is given by left multiplication.
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A homogeneous vector bundle over M is a G-equivariant vector bundle where the action

of an element g ∈ G is a vector bundle homomorphism

Given a left action of K on a vector space V, denoted by ρ : K × V → V. We can

form the associated vector bundle G×ρ V of the principal bundle π : G → G/K. We

have that all homogeneous vector bundles are isomorphic to an associated bundle

to G → G/K for a finite dimensional representation, (ρ, V) of K [127].

Proposition 9. Let π : G → G/K be a principal-K bundle over the homogeneous space. If

we have a Lie group homomorphism τ : K → P for some group P we have an left action

ρ : K × P → P, defined by ρ : (k, p) 7→ τ(k) · p. We can then form the associated bundle

G×ρ P. This bundle is a principal-P bundle over G/K.

Proof. The action of P on G ×ρ P is given by [g, p] · p′ := [g, pp′]. This action is

free and as the right multiplication of a group on itself is transitive, this action is

transitive on the fibres. Let s : Ux → P be a local section of a point xK ∈ G/K.

Define ψ(x′, p) = s(x′) · p, this map is clearly P-equivariant.

Example 7. An important example of a principal bundle is that of the frame bundle of a

vector bundle. Let π : E → M be a real vector bundle over a M, with n-dimensional fibres.

Define GL(E) to be the space of all invertible linear maps ex : Rn → Ex = π−1(x). Then

GL(E) is a principal bundle for the group GLn(R) under the action (p · g)(v) = p(g · v)
for where p : Rn → Ex, g ∈ GLn(R) and v ∈ Rn. We say that GL(E) is the frame bundle

for E.

Note that the above construction works for complex vector bundles with minimal

modification. The frame bundle of the tangent bundle π : TM→ M is often referred

to as the frame bundle, however any vector bundle can have a frame bundle to which it

is the associated vector bundle. In what follows the tangent frame bundle is referred

to as FM.

If an n-dimensional manifold is oriented and possesses a Riemannian metric, the

structure group of the tangent frame bundle can be reduced to that of SO(n). So the

tangent frame bundle is a principal SO(n) bundle.
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Given a G-equivariant bundle, π : E → M, we have that the action of the group

on the sections of this bundle is given by the formula (g · s)(x) = g · s(g−1x), i.e so

the following diagram commutes.

E E

M M

g·

π π

g·
s (g·s)

4.1.3 Differential Operators on Homogeneous Spaces

Differential operators play a vastly important role in physics. With the symmetries

of physical theories manifesting themselves in specific symmetries of key differential

operators. The most obvious example is that of Lorentz invariance which all of the

standard modern theories of physics requires. In physics, these differential operators

are often expressed in local coordinates, however to define them in a geometric and

coordinate free way, we need to express them as specific combinations of covariant

derivatives on vector bundles.

Definition 47. A covariant derivative on a vector bundle E → M is a map ∇ :

Γ(M, E) → Γ(M, T∗M ⊗ E) (where T∗M → M is the cotangent bundle), such that

for s ∈ Γ(E) and f ∈ C∞(M) we have that ∇( f s) = d f ⊗ s + f∇(s). If we take a

vector field X ∈ Γ(TM), we define ∇X : Γ(E) → Γ(E) to be ι(X)∇ where ι is the

contraction operator and refer to it as the covariant derivative by X.

Given a vector bundle π : E → M, we can form the endomorphism bundle which

has total space End(E) = ∪x∈MEnd(Ex) where Ex = π−1(x). Where End(Ex) are the

linear maps from Ex to itself.

We now introduce the formal definition of a differential operator, heuristically a

differential operator on a vector bundle is a linear combination of covariant deriva-

tive, where the coefficients are fibre preserving maps.

Definition 48. Given a vector bundle E → M, a differential operator is a linear map

from the sections of the bundle, Γ(E), to itself, such that it is composed of sections
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ai ∈ Γ(End(E)) and covariants derivatives ∇X where X ranges over all vector fields

on M. A differential operator of order m is an element of

Dm(M, E) = Γ(End(E)) · span{∇X1 · · · ∇Xj | j ≤ m}. (206)

Let the space of Differential operators on the vector bundle E be denoted by D(E).

Definition 49. Given a homogeneous vector bundle π : E → G/K, a differential

operator on E is called equivariant if g · Ds = D(g · s).

Recall that Ds ∈ Γ(E) and the action of G on sections is given by (g · s)(x) = g ·
s(g−1x). So for a differential operator to be G-equivariance, we require the following

diagram to commute:

Γ(E) Γ(E)

Γ(E) Γ(E)

D

g·

D
g·

Note that this definition doesn’t explicitly realise which homogeneous space of

the Lie group G we are examining. One way to make this more explicit is to move

from the pictures of sections of the vector bundles to K-equivariant functions.

As every homogeneous vector bundle is isomorphic to an associated vector bundle

of π : G → G/K [127]. Let π : G×ρ V → G/K be the associated vector bundle to the

map ρ : K × V → V and let C∞(G, V)K denote the smooth functions, f ∈ C∞(G, V)

that obey f (gk) = ρ(k−1) f (g) for all k ∈ K. Let the map that associates sections

s ∈ Γ(G×ρ V) to an element of C∞(G, V)K be denoted by s̃ and the reverse map that

sends f ∈ C∞(G, V)K to its associated section be denoted by f 0. Given a differential

operator D ∈ D(G ×ρ V), we then define an associated operator on C(G, V)K in

the following way: D̃ f = (̃D f 0). We will refer to this operator D̃ as a differential

operator also. Note that as D is a linear map, we have that D̃ is also linear on

C∞(G, V)K. We have that the left action of the Lie group on the algebra of functions

is given by Lg( f )(x) = g · f (x) = f (g−1x). So we have that the G-equivariance
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condition for differential operators then becomes Lg(D̃) = D̃ where Lg(D̃) f (x) :=

D̃( f ◦ Lg)(g−1x).

There is a Lie algebraic description of these differential operators. Given that

element X ∈ g act on G as left-invariant vector fields via the formula

X f (g) =
d
dt
∣∣
t=0 f (g exp(tX)), (207)

we get that X ∈ g acts on C∞(G, V) also in the same manner. This action of g on

C∞(G, V) induces an action of the universal enveloping algebra, U (g), on C∞(G, V)

also. The universal enveloping algebra U (g) is isomorphic to D(G ×R) viewed as

the algebra of operators on C∞(G) generated by the left invariant vector fields on G

and the identity operator. [124, Ch. II, Proposition 1.9]. So taking L ∈ End(V) and

taking X ∈ U (g) we can set the action of End(V)⊗U (g) on C∞(G, V) as (L⊗X) f =

L(X( f )). Let K act on End(V) ⊗ U (g) via the adjoint action in the following way:

µ(k)(L⊗ X) = ρ(k)Lρ(k−1)⊗ Adk(X). Let (End(V)⊗ U (g))K denote the elements

that K-invariant under the above action. i.e.

(End(V)⊗U (g))K = {D ∈ End(V)⊗U (g) | µ(k)(D) = D ∀ k ∈ K}. (208)

Proposition 10 ([128]). Let G/K be a reductive homogeneous space with K compact. Then

the space of G-equivariant differential operators on π : G×ρ V → G/K is bijective with the

space (End(V)⊗U (g))K.

Note that 1⊗ D ∈ End(V)⊗ U (g) descends to a homogeneous differential opera-

tor if Adk(D) = D (as ρ(k)ρ(k)−1 = 1). So for a differential operator on the smooth

functions of G to descend to a G-invariant differential operator on G/K, we require

that Adk(D) = D. As the space of differential operators on G is isomorphic to U (g),
and the universal enveloping algebra is generated by X ∈ g which are view as vector
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fields on G given by eq. (207). So for a vector field on G to descend to a differential

operator on G/K, we require Adk(X) = X for any k ∈ K.

Adk(X)( f )(x) = X( f ◦ Adk) ◦ Ad−1
k (x) = X( f ◦ Adk)(k−1xk) (209)

=
d
dt
∣∣
t=0 f ◦ Adk(k−1xk exp(tX)) =

d
dt
∣∣
t=0 f (xk exp(tX)k−1) (210)

(211)

this is equal to X( f ) only when k exp(tX)k−1 = exp(tX). Note that we have that

Adk(X) = Rk(X) for X ∈ g and therefore this holds on U (g), where Rk( f )(x) =

f (xk) but Rk(x) = xk−1 for x ∈ G. So the elements of g that are left G-invariant and

right K invariant descend to differential operators on G/K.

We now need to construct the specific differential operator we are keen to investi-

gate, the Dirac operator.

4.1.4 Spin Structures and Spinor Bundles

A given Clifford algebra, Cl(V, Q), can be decomposed into the eigenspaces of the

map α : Cl(V, Q) → Cl(V, Q) which extends the map α(v) = −v for v ∈ V to all of

Cl(V, Q), i.e. α(v1 . . . vk) = (−1)kv1 . . . vk. Note that α2 = Id so it has eigenvalues ±1

on Cl(V, Q). Let Cl0(V, Q) denote the +1 eigenspace and Cl1(V, Q) denote the −1

eigenspace, referred to as the even and odd parts of the Clifford algebra respectively.

We have Cl(V, Q) = Cl0(V, Q)⊕ Cl1(V, Q).

Definition 50. Let v ∈ V ⊂ Cl(V, Q) be such that Q(v) 6= 0, let P(V, Q) ⊂ Cl(V, Q)

be the space generated by such v ∈ V. We then define the Pin(V, Q) group of

a Clifford algebra to be the subgroup of P(V, Q) generated by elements v ∈ V

Q(v) = ±1. The Spin(V, Q) group is then the even subgroup of Pin(V, Q), i.e.

Spin(V, Q) = Pin(V, Q) ∩ Cl0(V, Q) (212)
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The spin group is a Lie group and is a double cover of the special orthogonal

group SO(V, Q) [62]. We let Spin(n) denote the spin group when V = Rn and Q is

the usual Euclidean inner product.

Given that the spin group is a Lie group, we can consider principal bundles over

manifolds that have a spin group as their structure group. We are focussed on a

specific Spin bundle over an oriented Riemannian manifold:

Definition 51. Given the tangent frame bundle, π : FM → M of a connected n-

dimensional oriented manifold M with a Riemannian metric we can define a spin

structure on the manifold is a pair (P, Λ) such that:

a) P is a Spin(n)-principal bundle over M, π̃ : P→ M.

b) Λ : P→ FM is an equivariant 2-fold covering, i.e. the diagram

P× Spin(n) P

M

FM× SO(n) FM

Λ×λ Λ

π̃

π

commutes. Where λ : Spin(n)→ SO(n) is the covering map and the horizontal

arrows are the right action in the principal bundle structure.

Definition 52. Given a representation of the spin group, ρ : Spin(n)→ End(V) for a

vector space V. Let M be a manifold with a spin structure π : P → M, then we can

form the associated vector bundle P×ρ V. This is called a spinor bundle, sections of

this bundle are called spinor fields and they can be viewed as functions s : P → V

such that s(pg) = ρ(g−1)s(p) for every p ∈ P and g ∈ Spin(n).

Note that this allows for different types of spinors depending on the representa-

tion chosen. There in general exist multiple representations of the spin group to

choose from, however the consequences of the different choices is not investigated

here, see [94] for further details. Given that representations of the spin group are

given by restricting an irreducible representation of a Clifford algebra, we can take
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V to be a Clifford module, with the Clifford multiplication map c : Cl(V, Q) →
End(V).

4.1.5 The Dirac Operator

The covering map Λ allows us to lift various structures from the tangent frame

bundle to the spin bundle. The object we require an understanding of is the spin

connection.

Definition 53. A connection 1-form, ω, on a principal G bundle π : P → M is a

g valued map from the tangent bundle TP of the total space, such that it has the

following properties:

• ω(X̃) = X for each X ∈ g where X̃ denotes X acting as a vector field on P.

• (Rg)∗ω = Adg−1ω, i.e. the following diagram commutes:

TpP g

TpgP g

ωp

dRg Adg−1

ωpg

Given a vector bundle π : V → M, we have the following result:

Proposition 11 ([70], Propositive 1.16). There is a one-to-one correspondence between

connections of the frame bundle GL(V) and covariant derivatives on the vector bundle V.

Restricting ourselves to considering the tangent frame bundle over a oriented Rie-

mannian manifold, we have that a connection 1-form takes values in so(n). Given

the covering map λ : Spin(n)→ SO(n) we can pull back the connection 1-form from

FM to P. Taking the unique Levi-Civita connection (i.e. the metric compatible and

torsion free covariant derivative on the tangent bundle) on an oriented Riemannian

manifold we can take the associated connection 1-form on the tangent frame bundle.

Taking the pullback to the Spin bundle, we get a unique connection one-form. Us-

ing this we can form covariant derivatives on the associated vector bundles P×ρ V
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in the following way. View sections of P ×ρ V as functions ψ : P → V such that

ψ(p · g) = ρ(g−1)ψ(p), then define

Dωψ = dψ + ρ∗(ω)ψ (213)

where ρ∗ is the differential of the representation ρ : Spin(n)×V → V and dψ is the

exterior derivative.

Definition 54. The spinor covariant derivative ∇S on the bundle S = P×ρ V is the

map ∇S : Γ(S) → Γ(T∗M⊗ S) given by the unique lift of the Levi-Civita covariant

derivative, ∇, on the tangent bundle TM by the procedure described above.

Taking the cotangent bundle2 of a Riemannian manifold T∗M, we can form a

Clifford algebra at each point by taking Cl(T∗x M, g) at each point x ∈ M. By the

inclusion of T∗x M ⊂ Cl(T∗x M, g) we can use the Clifford multiplication between an

element in T∗x M and a Clifford module (S, c) for Cl(T∗x M, g). This can be done at

every point x ∈ M giving us an extension of Clifford multiplication to a map from

Γ(T∗M⊗ S) to Γ(S).

So by combining the Clifford multiplication on sections with the spinor covariant

derivative ∇S we get an operator from Γ(S) into itself.

Definition 55. Given a Riemannian spin manifold, M, with a spinor bundle S, the

Dirac operator is given by

/Dψ = (c ◦ ∇S)ψ (214)

where ψ ∈ Γ(S).

4.1.6 Spin Geometry on Homogeneous Spaces

Recall that the isotropy representation for a reductive homogeneous space, G/K is

a map Io : K → GL(m), where g = k⊕ m is the reductive decomposition. When

2 By making use of the so-called musical isomorphisms between the tangent and cotangent bundles
we could equally take the tangent bundle as was done in section 2.1.
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this homogeneous space is an oriented Riemannian reductive homogeneous space

the isotropy representation maps into SO(m). We saw in prop. 6 that the isotropy

representation is equivalent to the adjoint representation.

The following theorem allows us to assert the existence of spin structures on ho-

mogeneous Riemannian manifolds in terms of the existence of lifts of the isotropy

representation.

Theorem 8 ([129]). Let M be an n-dimensional, oriented, connected Riemannian manifold

with a transitive Lie group G of orientation-preserving isometries. Let K be the isotropy

group of a point o of M and Ad ∼= τ : K → S0(n) be the linear isotropy representation.

Then

• If τ lifts to τ̃ : K → Spin(n), then there is a spin structure on M such that P =

G×τ̃ Spin(n)

• If τ̃ and τ̃′ are two lifts of τ and the spin structures defined by P and P′ = G ×τ̃

Spin(n) are isomorphic, then τ̃ = τ̃′.

• If the group G is simply connected and M has a spin structure, then τ lifts to Spin(n).

Thus if we can lift the adjoint action Ad : K → SO(m) to an action Ãd : K →
Spin(m) such that the following diagram commutes:

Spin(m)

K SO(m)

λÃd

Ad

then we have a spin structure defined over G/K. The question of existence of these

lifts is non-trivial and is not investigated here.

Given the group homomorphism Ad : K → SO(n) and Ãd : K → Spin(n), we can

form the associated principal SO(n) (Spin(n)) bundle to π : G → G/K by following

prop. 9.

Proposition 12 ([130]). The tangent frame bundle FM over an oriented connected Rie-

mannian homogeneous manifold is equivalent to the associated principal SO(n) bundle

G×Ad SO(n).
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Similarly we have that the principal Spin(n) bundle is the same as G×Ãd Spin(m).

Given this, we have that the spinor bundles associated to the map ρ : Spin(n) →
End(V), which is a restriction of the Clifford module (c, V), can be expressed in the

following terms:

Proposition 13 ([130]). Given a spin structure P = G ×Ãd Spin(m) over a connected

oriented Riemannian homogeneous manifold G/K. The spinor bundle P×ρ V is the same as

G×
ρ◦Ãd V.

Given that sections of an associated bundle can be viewed as equivariant functions,

we have that spinors ψ ∈ Γ(P×ρ V) are ρ ◦ Ãd(K)-equivariant functions from G to

the Clifford module V, i.e. ψ(k) = ρ(Ãd(g−1))ψ(g).

So using the results of section 4.1.3 along with the knowledge that spinors are

sections of the associated bundle G ×
ρ◦Ãd V for some irreducible Clifford module

(V, c) such that c|Spin(n) = ρ. We can describe the G-equivariant differential op-

erators on the spinor bundle of a homogeneous space G/K, as being elements of

D ∈ End(V)⊗U (g) that obey the following: let D = ∑ ωi ⊗Xi for ωi ∈ End(V) and

Xi ∈ U (g) then they must satisfy:

µ(k)(D) := ∑
i
(ρ ◦ Ãd)(k)ωi(ρ ◦ Ãd)(k−1)⊗ Adk(Xi) = D (215)

for all k ∈ K.

Example 8. The sphere is a homogeneous space, SU(2) → SU(2)/U(1). Thus we have

a SU(2)-equivariant principal bundle given by the Hopf fibration. Given that Spin(2) ∼=
U(1) ∼= SO(2) we naturally have a lift of any representation of U(1) into Spin(2). Also

we have that Dirac operator is an SU(2)-equivariant differential operator - see [113, Section

9.A].

The example of the sphere can be suitably generalised. By the work of Rieffel

in [131, 132] it is shown that for a coadjoint orbit of a compact Lie group, the metric

induced by the form Kil is part of a G-invariant Kähler structure. It is also shown

that the Levi-Civita connection for this metric is G-invariant. It is also shown that the
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4.2 transformations of fuzzy spaces

Dirac operator for this connection is G-equivariant [131, Prop 5.9]. This motivates the

study of G-equivariant Dirac operators as a potential pathway to constructing fuzzy

spaces that approximate manifolds with symmetry. However, the precise way to

implement the K-invariance mentioned above is not so clear at this point. However

the expression of differential operators on homogeneous spaces as being elements

of (End(V)⊗U (g))K seems very reminiscent of the Dirac operator for a fuzzy space

being an element of End(V)⊗ End(Mn(C)). Investigating this potential link is likely

a fruitful avenue of research.

4.2 transformations of fuzzy spaces

We now turn out attention to the action of Lie groups on fuzzy spaces. Specifically

we investigate what restrictions are imposed by requiring the Dirac operators to be

equivariant with respects to a Lie group.

Definition 56. A general transformation of a fermion space (A,H, s, Γ, J) is a unitary

operator U : H → H such that

• For every a ∈ A there exists some b ∈ A such that Uρ(a)U−1 = ρ(b).

• UΓ = ΓU

• UJ = JU

A transformation then sends a Dirac operator D into another Dirac operator D′

with the same spectrum:

D′ = UDU−1. (216)

Thus transformations are invariants of the spectral geometry of fuzzy spaces. Any

transformation that leaves the Dirac operator the same is called a symmetry, i.e. D′ =

D. And given a transformation U, any such Dirac operator such that D′ = D,

i.e. DU = UD will be called equivariant with respects to U.
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4.2 transformations of fuzzy spaces

Proposition 14 ([46]). A transformation of a fuzzy space acts on an element v⊗ m ∈ H
as:

U(v⊗m) = hv⊗ ρ(g)mρ(g)−1 (217)

for some unitary element g ∈ A and a unitary h : V → V that satisfies hγ = γh. Any such

g, h in turn defines a transformation.

Thus applying a transformation to a Dirac operator as defined in eq. (75) we get

that ωi 7→ hωih−1 and Ki 7→ ρ(g)Kiρ(g−1).

If we restrict ourselves to the case that q− p mod 8 6= 1, 5 then the Dirac operator

is expressible as follows:

D = ∑
i

αi ⊗ [Li, ·] + ∑
j

βj ⊗ {Hj, ·}, (218)

where we have that αi, β j are products of an odd numbers of gamma matrices, and

that αi, Li are anti-Hermitian and that βj, Hj are Hermitian. The action of a transfor-

mation on such a Dirac operator gives us (dropping the notation ρ):

UDU∗(v⊗m) = UD(h∗v⊗ g∗mg)

= U(∑
i

αih∗v⊗ [Li, g∗mg] + ∑
j

βjh∗v⊗
{

Hj, g∗mg
}
)

= ∑
i

hαih∗v⊗ g [Li, g∗mg] g∗ + ∑
j

hβjh∗v⊗ g
{

Hj, g∗mg
}

g∗)

Note that we have:

g [Li, g∗mg] g∗ = [gLig∗, m] (219)

g
{

Hj, g∗mg
}

g∗ =
{

gHjg∗, m
}

(220)
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4.2 transformations of fuzzy spaces

so we get that

UDU∗ = ∑
i

hαih∗ ⊗ [gLig∗, ·] + ∑
j

hβjh∗ ⊗ {gHjg∗, ·} (221)

We now specify to specific Clifford types to investigate equivariant Dirac operators.

4.2.1 Type (1, 3) SU(2)-equivariant Dirac operators

For a type (1, 3) fuzzy space we have that V = C4 and within the Dirac operator we

have that the Hermitian terms are:

hγ0h∗v⊗ {gH0g∗, m}, hγ1γ2γ3h∗v⊗ {gH123g∗, m} (222)

and that the anti-Hermitian terms are:

hγih∗v⊗ [gLig∗, m] ∑
i<j

hγ0γiγjh∗v⊗ [gLijg∗, m]. (223)

So for a SU(2) action on this fuzzy space we need a transformation for every

b ∈ SU(2) provided by:

U(b) : C4 ⊗Mm(C)→ C4 ⊗Mm(C), U(b) = ψ(b)⊗ Iρm(b), (224)

where Iρm(b) is the conjugate action of the m-dimensional representation of b, ρm(b),

and ψ is some representation of SU(2) in C4 that obeys the constraints in prop. 14.

So we have that

ψ : SU(2) −→End(V)

b 7−→h = ψ(b)
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4.2 transformations of fuzzy spaces

and

ρm : SU(2) −→End(Mm(C))

b 7−→g = ρm(b)

If we pass to the infinitesimal picture by letting b = 1 + εb̃, with b̃ ∈ su(2), then

we have that that h = 1 + εh̃ and g = 1 + εg̃, where h̃ and g̃ are in the derived repre-

sentations ψ∗(su(2)) and (ρm)∗(su(2)) respectively. We note that we take ψ∗(su(2))

to map the generators Ti to the spin representation of su(n), which are given by

ψ∗(Ti) = −1
2 fijkSjk = −1

8 fijk[γ
j, γk] = −1

4 fijkγjγk, where Sij = 1
4 [γ

i, γj]. Note that γi

and γj are the anti-Hermitian generators of the (1,3)-Clifford module and the γi anti-

commute with the element γ0 (i.e. γiγ0 = −γ0γi) Thus we arrive at the following

expression for the action of SU(2):

hγ0h∗v⊗ {gH0g∗, m} = (1 + εh̃)γ0(1− εh̃)v⊗ {(1 + εg̃)H0(1− εg̃), m} (225)

= γ0v⊗ {H0, m}+ ε
(
[h̃, γ0]v⊗ {H0, m}+ γ0v⊗ {[g̃, H0], m}

)
+ o(ε2) (226)

So we need the ε term to vanish for this operator to be equivariant. For the [h̃, γ0]

term, we examine this by expanding out the formula:

[h̃, γ0] = −1
8

hi fijk[[γ
j, γk], γ0] = −1

4
hi fijk[γ

iγj, γ0]

= −1
4

hi fijk(γ
jγkγ0 − γ0γjγk) = −1

4
hi fijk(γ

j(−γ0γk)− γ0γjγk)

= −1
4

hi fijk(−(−γ0γj)γk − γ0γjγk) = 0

So in order for the ε term to vanish we need that [g̃, H0] vanishes for any element

g̃ ∈ (ρm)∗(su(2)). This requires that H0 be in the center of su(2), which is equal

to multiples of the identity. Examining the term hγ1γ2γ3h∗v ⊗ {gH123g∗, m} in a

similar manner we have that we need:

[h̃, γ1γ2γ3]v⊗ {H123, m}+ γ1γ2γ3v⊗ {[g̃, H123], m} = 0 (227)
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4.2 transformations of fuzzy spaces

For anti-Hermitian Clifford generators we have that:

[γiγj, γa] = −2δajγi + 2δaiγj (228)

[γiγj, γaγb] = −2δajγiγb + 2δaiγjγb − 2δbjγaγi + 2δbiγaγj (229)

[γiγj, γaγbγc] = (−2δajγi + 2δaiγj)γbγc (230)

+ γa(−2δbjγi + 2δbiγj)γc (231)

+ γaγb(−2δcjγi + 2δciγj) (232)

[γiγj, γa1γa2 · · · γan ] = (−2δa1 jγi + 2δa1iγj)γa2 · · · γan (233)

+ γa1(−2δa2 jγi + 2δa2iγj)γa3 · · · γan (234)

+ · · ·+ γa1 · · · γan−1(−2δan jγi + 2δaniγj) (235)

−1
4

fijk[γ
jγk, γa1γa2 · · · γan ] = fija1γjγa2 · · · γan + fija2γa1γjγa3 · · · γan (236)

+ · · ·+ fijan γa1γa2 · · · γan−1γj (237)

So for the case above we have that (note that here we have specified to 3 anti-

Hermitian gamma matrices):

[h̃, γ1γ2γ3] = −1
4

hi fijk[γ
jγk, γ1γ2γ3] (238)

= hi( fij1γjγ2γ3 + fij2γ1γjγ3 + fij3γ1γ2γj) (239)

= hi( fi11γ1γ2γ3 + fi21γ2γ2γ3 + fi31γ3γ2γ3 (240)

+ fi12γ1γ1γ3 + fi22γ1γ2γ3 + fi32γ1γ3γ3 (241)

+ fi13γ1γ2γ1 + fi23γ1γ2γ2 + fi33γ1γ2γ3 (242)

= hi(− fi21γ3 + fi31γ2 − fi12γ3 − fi32γ1 (243)

+ fi13γ2 − fi23γ1) (244)

= hi(−γ1( fi23 + fi32) + γ2( fi13 + fi31)− γ3( fi21 + fi12) (245)

= 0. (246)
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4.2 transformations of fuzzy spaces

Where the last equality comes from the total antisymmetry of the structure constants

fijk. So we require that [g̃, H123] = 0 also. Which again means that H123 is an element

of the center of su(2) i.e. is proportional to the identity element.

Examining the anti-Hermitian term hγih∗v⊗ [gLig∗, m] we have that we need the

following to vanish

[h̃, γi]v⊗ [Li, m] + γiv⊗ [[g̃, Li], m] (247)

Again as we have that h̃ = −1
2 hm fmjkSjk, we can use the rules from above to have

that:

[h̃, γi] = −1
4

hm fmjk[γ
jγk, γi] = −1

4
hm fmjk(−2δikγj + 2δijγk) (248)

=
1
2

hm( fmjiγ
j − fmikγk) = hm fmjiγ

j (249)

So, we need that γiv ⊗ [[g̃, Li], m] = −hm fmjiγ
j ⊗ [Li, m]. As g̃ ∈ (ρm)∗(su(2)), we

need that [g̃, Li] = ga[Ta, Li] = ha faijLj, where indices have been relabelled for clarity.

Note that [Ta, Tb] = fabcTc. A solution is to take Li = Ti and ga = ha, so we have that

ga[Ta, Ti] = ga faijTj = −ga fajiTj as needed. More clearly

[h̃, γi]v⊗ [Li, m] + γiv⊗ [[g̃, Li], m] = hm fmjiγ
jv⊗ [Li, m] + ga faijγ

iv⊗ [Lj, m] (250)

= fmijγ
iv⊗ [Lj, m](gm − hm) = 0 (251)

Note that the above calculation does not explicitly use the fact that we are dealing

with 3 anti-Hermitian gamma matrices and holds for any number of anti-Hermitian

gamma matrices.

The other anti-Hermitian term, ∑i<j hγ0γiγjh∗v⊗ [gLijg∗, m], yields the following

term that needs to vanish:

∑
i<j

[h̃, γ0γiγj]v⊗ [Lij, m] + γ0γiγj ⊗ [[g̃, Lij], m] (252)
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4.2 transformations of fuzzy spaces

We have that

[h̃, γ0γiγj] = −1
4

ha fabc[γ
bγc, γ0γiγj] (253)

= −1
4

ha fabc([γ
bγc, γ0]︸ ︷︷ ︸
=0

γiγj + γ0[γbγc, γiγj]) (254)

= −1
4

haγ0 fabc

(
−2δciγbγj + 2δbiγcγj − 2δcjγiγb + 2δbjγiγc

)
(255)

=
1
2

haγ0( fabiγ
bγj − faicγcγj + fabjγ

iγb − fajcγiγc) (256)

=
1
2

haγ0(2 fabiγ
bγj + 2 fabjγ

iγb) = ha fabiγ
0γbγj + ha fabjγ

0γiγb (257)

So we have that the first term in eq. (252) becomes

[h̃, γ0γiγj]v⊗ [Lij, m] = ha( fabiγ
0γbγjv⊗ [Lij, m] + fabjγ

0γiγbv⊗ [Lij, m]) (258)

So we need that the term γ0γiγjv⊗ [[g̃, Lij], m] exactly cancels these contributions.

This suggests Lij is a product of the su(2) generators, as we have that

[Ta, TiTj] = [Ta, Ti]Tj + Ti[Ta, Tj] = faibTbTj + fajbTiTb. (259)

However, TiTj is not anti-Hermitian. As (TiTj)
† = T†

j L†
i = LjLi = LiLj + f jikLk 6=

−LiLj, so taking Lij = TiTj is not an option. However, we can take Lij = fijkTk, which

is anti-Hermitian as the structure constants are real valued. This is akin to taking

Lij = [Ti, Tj]. We also need to restrict to summing i < j because Tij = −Tji and

Tii = 0, so if we summed over all i and j, we would cancel everything. Note that this

is assumed from the beginning anyways as γiγj = −γjγi + 2ηij, so to remove this

complication we always order the indices.
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4.2 transformations of fuzzy spaces

Armed with this information we can reduce the formula in eq. (258) by using the

following property of the structure constants for su(n) which arises due to the Jacobi

identity that the Lie bracket satisfies:

[Ta, [Ti, Tj]] = [[Ta, Ti], Tj] + [Ti, [Ta, Tj]] (260)

fijb[Ta, Tb] = faib[Tb, Tj] + fajb[Ti, Tb] (261)

fijb fabkTk = faib fbjkTk + fajb fibkTk (262)

( fijb fabk − faib fbjk − fajb fibk)Tk = 0 (263)

faib fbjk + fijb fbak + fajb fibk = 0 (264)

This allows us to assert the following, (where indices have been relabelled from

above):

[ faibLbj + fajbLib, m] = [ faib fbjkTk + fajb fibkTk, m] (265)

= [− fijb fbakTk, m] (266)

= [ fijb fabkTk, m] (267)

(268)

So we need that ∑i<j[g̃, Lij] = −∑i<j ha fijb fabkTk,

∑
i<j

[g̃, Lij] = ∑
i<j

[g̃, fijbTb] = ∑
i<j

ga[Ta, fijbTb] = ∑
i<j

ga fijb fabkTk (269)

So these terms only vanish if we have that ga = −ha. Which leads us to the

following conclusion. We cannot have both of the anti-Hermitian terms present if

we require SU2 equivariance.

Again note that the number of anti-Hermitian gamma matrices is not used, so this

derivation is valid for any number.

So summarising our results here, we have that the Hermitian matrices must com-

mute with all elements of the Lie algebra su(2) and we can only have one of the two
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4.2 transformations of fuzzy spaces

anti-Hermitian terms. So the two forms for the SU(2) equivariant Dirac operators

are the following

D =

αγ0 ⊗ 1 + βγ1γ2γ3 ⊗ 1 + δγi ⊗ [Li, ·]

aγ0 ⊗ 1 + bγ1γ2γ3 ⊗ 1 + c ∑i<j γ0γiγj ⊗ [ fijkLk, ·]
(270)

We can notice that γ1γ2γ3 = iγ0(−iγ0γ1γ2γ3), and that γi = γ0γ0γi. So we can

rewrite these operators as:

D =

γ0(α⊗ 1 + iβγ⊗ 1 + δγ0γi ⊗ [Li, ·])

γ0(a⊗ 1 + ibγ⊗ 1 + c ∑i<j γiγj ⊗ [ fijkLk, ·])
(271)

Expressing in terms of a (0, 3) Clifford Module

We can construct the (1,3) geometry from smaller Clifford modules by taking suitable

products of Clifford modules as described in section 2.2.4. To construct the (1, 3)

Clifford module from a (0, 3) Clifford module we need to product it with a type

(1, 0).

We can take the gamma matrices to be:

γ0 =

0 1

1 0

 , γa =

 0 iσa

−iσa 0

 (272)
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where σa are the generators of a (0, 3) Clifford module acting on C2 with real struc-

ture. With this expression of the gamma matrices we can write the Dirac operators

as:

D =



 0 α⊗ 1 + iβσ1σ2σ3 ⊗ 1 + iδσi ⊗ [Li, ·]

α⊗ 1− iβσ1σ2σ3 ⊗ 1− iδσi ⊗ [Li, ·]




0 a + ibσ1σ2σ3 ⊗ 1 + ∑
j<k

c fijkσiσk ⊗ [Lk, ·]

a− ibσ1σ2σ3 ⊗ 1 + ∑
j<k

c fijkσiσk ⊗ [Lk, ·] 0


(273)

If we let σa = (−iσ̃a), where σ̃a are the Pauli matrices. Then we have that

iσ1σ2σ3 = −σ̃1σ̃2σ̃3 = −iI2×2. Using this we have that ibσ1σ2σ3 ⊗ 1 = −ibI2. So we

can rewrite the expression above slightly more compactly as:

D =



 0 (α− iβ)⊗ 1 + iδσi ⊗ [Li, ·]

(α + iβ)⊗ 1− iδσi ⊗ [Li, ·]




0 (a− ib)⊗ 1 + ∑
j<k

c fijkσiσk ⊗ [Lk, ·]

(a + ib)⊗ 1 + ∑
j<k

c fijkσiσk ⊗ [Lk, ·] 0


(274)

Chiral Rotations

The operator R = exp(iαΓ) is a chirality rotation operator, a transformation we can

perform on the finite noncommutative geometry in the same way as the SU(2) action

above. For even values of s = q− p mod 8, we take R = exp(−iπΓ/4). The modified
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Dirac operator D̃ = RDR−1, maybe or may not be another Dirac operator in general,

but for even s we have that:

D̃ = (cos(π/4)− i sin(π/4)Γ)D(cos(π/4) + i sin(π/4)Γ) (275)

= (cos(π/4)− i sin(π/4)Γ)2D = exp(−iπΓ/4) exp(−iπΓ/4)D (276)

= exp(−iπΓ/2)D = cos(π/2)− i sin(π/2)ΓD (277)

= −iΓD (278)

where we have use that ΓD = −DΓ. For s = 2, 6 we have that D̃ is again a Dirac

operator (done by checking the axioms and using the relations between J and Γ).

So for the (1, 3) Dirac operators above, we should examine what −iΓD are for the

two SU(2) equivariant operators. Lets look at

−iΓD = −iΓ(αγ0 ⊗ 1 + βγ1γ2γ3 ⊗ 1 + δγi ⊗ [Li, ·]) (279)

= −i(γ⊗ 1)(αγ0 ⊗ 1 + βγ1γ2γ3 ⊗ 1 + δγi ⊗ [Li, ·])) (280)

= −i(αγγ0 ⊗ 1 + βγγ1γ2γ3 ⊗ 1 + δγγi ⊗ [Li, ·]) (281)

So we need to examine the products γγµ for µ = 0, 1, 2, 3. Starting with µ = 3, we

get the following:

γγ3 = iγ0γ1γ2, γγ2 = −iγ0γ1γ3, (282)

γγ1 = iγ0γ2γ3, γγ0 = iγ1γ2γ3, (283)

γγ1γ2γ3 = −iγ0. (284)

So we end up with

−iΓD =− i(α(iγ1γ2γ3)⊗ 1 + β(−iγ0)⊗ 1

+ iγ0δ(γ2γ3 ⊗ [L1, ·]− γ1γ3 ⊗ [L2, ·] + γ1γ2 ⊗ [L3, ·]) (285)
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This can be summarised by

−iΓD = αγ1γ2γ3 ⊗ 1− βγ0 ⊗ 1 + δ ∑
i<j

εijkγ0γiγj ⊗ [Lk, ·] (286)

As fijk = εijk for su(2) we have that this is of the form of the other type of Dirac

operator in eq. (270) with δ = c, α = b and β = −a. So taking account of the chiral

transformations, there is only one form of Dirac operator on a type (1, 3) fuzzy space,

which we will take as:

D = γ0(a⊗ 1 + bγ⊗ 1 + c ∑
i<j

γiγj ⊗ [Lij, ·]) (287)

where Li j = fijkLk. Note there is no relationship between the coefficients a, b, c

imposed. So in particular, the fuzzy sphere as described by Barrett is precisely the

case when a = c and b = 0, is not the unique SU(2) equivariant Dirac operator.

4.2.2 Type (0, 3) SU(2) Equivariant Dirac Operators

For a type (0, 3) Clifford module we have that, s = 3 and the Hermitian gamma

products are γ1γ2γ3 and (γi)2 = −1 (so constants) and the anti-Hermitian products

are γi and γiγj (for i < j). So we have the following Hermitian terms in the Dirac

operator:

hγ1γ2γ3v⊗ {gH123g∗, m} v⊗ {gHiig∗, m} (288)

and the following anti-Hermitian terms:

hγih∗v⊗ [gLig∗, m] ∑
i<j

hγiγjh∗v⊗ [gLijg∗, m] (289)
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By following a similar procedure to the (1, 3) case we arrive at the following forms

for the SU(2) equivariant Dirac operators:

D =

α⊗ 1 + δγi ⊗ [Li, ·]

α⊗ 1 + λγiγj ⊗ [ fijkLk, ·]
(290)

Again we notice that the Grosse-Prešnadjer Dirac operator is given when α = δ and

so is not the unique SU(2)-equivariant Dirac operator for (0, 3) Clifford modules.

4.2.3 Extracting the metric

For boty type (1, 3) and type (0, 3) fuzzy spaces the SU(2)-equivariance is not

enough to select the fuzzy sphere Dirac operator given by Barrett or Grosse-Prešnadjer.

To examine the metric content, we note that the metric tensor is contained in

the symbol of squared Dirac operator D2. That is the coefficients in front of the

second order terms must equal the metric. The lower order terms are governed by

the connection which may not be Levi-Civita. As the second order terms will arise

from the double commutator terms in the square of the fuzzy Dirac operators D2,

we can extract the vielbeins under the following identification: that [Lij, ·] → Xij :=

xi∂j − xj∂i, which both satisfy the same commutation relations. Focusing on the

(0, 3), as both the (1, 3) and (0, 3) have the same commutator terms, we have that:

D = α⊗ 1 + λ ∑
i<j

γiγj ⊗ [Lij, ·] (291)

for i < j.

Using the identification [Lij, ·] → Xij and using that that for (0, 3) we can take

γj = iσj, where σj are the usual Pauli matrices we have that: γiγj = −iεijkγk. We

then find that:

D = α⊗ 1− iλσ3 ⊗ X12 + iλσ2 ⊗ X13 − iλσ1 ⊗ X23 (292)
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Expanding this and gathering each derivative term yields:

D = a− iλ(σ2x3 − σ3x2)∂1 − iλ(σ3x1 − σ1x3)∂2 − iλ(σ1x2 − σ2x1)∂3 (293)

Then comparing this to the expression: D = ieαaσa∇α we can read off the entries for

the inverse veilbein. Setting λ = 1 to simplify matters we arrive at:

(eαa) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (294)

This inverse veilbein gives the inverse metric of:

g−1(x1, x2, x3) =


(x2)2 + (x3)2 −x1x2 −x1x3

−x1x2 (x1)2 + (x3)2 −x2x3

−x1x3 −x2x3 (x1)2 + (x2)2

 (295)

which is precisely the metric given in eq. (85), which was shown to be the inverse to

the round metric on the sphere in section 2.3.1.

So the SU(2)-equivariant Dirac operators for type (1, 3) and (0, 3) fuzzy geome-

tries all produce the round metric on the sphere in the continuum limit. It would be

interesting to analyse the spectrum of one of the arbitrary SU(2)-equivariant fuzzy

Dirac operators and apply the spectral measures of chapter 3. It should be found

that the produce similar results to the fuzzy spheres.
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5
C O N C L U S I O N A N D D I S C U S S I O N

The aim of this program of research was to better understand the subject of fuzzy

spaces. An emphasis was made to develop tools to measure familiar geometric

constructs in the context of fuzzy spaces, and attain non-trivial values.

Using two concrete examples of fuzzy spaces that are known to have a manifold

as their commutative limit, the fuzzy sphere and fuzzy torus. Several proposals

for a dimension and volume measure were examined. The quality of a spectral

measure was judged based on what it produced for these cases. With a measure

being deemed inappropriate if it produced values that were drastically different

from the continuum value.

As the fuzzy tori have drastically different spectra to their continuum counter-

parts, with the largest magnitude eigenvalues differing the most. Their spectra do

not obey the asymptotic expression predicted by Weyl’s law. Thus, a naive imple-

mentation of Weyl’s law would not be appropriate for fuzzy spaces, and an analysis

was conducted in chapter 3 to explain why.

Locating the poles of the spectral zeta function (which occur at s = d/2 for

Laplace-type operators) for fuzzy spaces also was deemed inappropriate. A number

of reasons were identified for this, despite a procedure being developed that works

well for both the fuzzy sphere and fuzzy torus. Multiple fuzzy spaces of different

matrix sizes were required in order for this to be defined. This is an unattractive

feature as it is not always possible to ensure the same geometry is being considered

- such as when investigating the random fuzzy spaces. The dimension is also an
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intrinsic property of a fuzzy space and should be calculable from a single spectrum.

Even in the cases when it is effective, the convergence to the continuum value is

logarithmic in the matrix size. This makes it useless in general for the small matrix

sizes considered in this thesis.

The spectral dimension was adapted to the fuzzy geometry case, where it exhibits

an unpleasant feature. Originally it was developed to produce a scale dependent

measure of dimension from the scalar Laplacian spectrum, which always contains

a zero eigenvalue. When the spectrum of an operator does not contain zero as an

eigenvalue (such as the Dirac operator for curved spaces) the spectral dimension,

ds(t) grows linearly as the parameter t is increased. This is not a problem in the

continuum setting as the topological dimension is defined as t → 0. However the

spectral dimension vanishes at t = 0 for fuzzy spaces, as was seen in fig. 11. It is

therefore necessary to examine some non zero value of the parameter t, for which

the linear growth begins to interfere. At this point a new modification called the

spectral variance was defined to remove this linear mode. The spectral variance,

vs(t), again vanishes as t→ 0 and it also vanishes as t→ ∞. It produces remarkably

good results for the fuzzy sphere, with the global maximum attaining a value close

to 2 for very small matrix sizes. When applied to the fuzzy torus a extraneous bump

for small values of t is seen, that becomes sharpened and shifted towards t = 0 as

the matrix size is increased. After the bump a plateau in the spectral variance occurs,

similar to that seen for the fuzzy sphere and the continuum cases. Thus this bump

is a considered a consequence of the fuzzy torus spectrum deviating from a classical

spectrum for the largest eigenvalues. The plateau is at a height that is very close to

the continuum dimension of 2.

The spectral variance also exhibits an interesting feature when applied to a non-

square fuzzy torus. When applied to the a = 3 fuzzy torus, the spectral variance

has two plateaus. With the plateau nearest the origin having a height similar ∼ 2

and occurring for similar values of t as the plateau for the square fuzzy torus. The

second plateau occurs for larger value of t and has a height of ∼ 1. This is inter-

preted as Kaluza-Klein type effect, where the spectral variance is able to measure
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conclusion and discussion

the longer direction of the torus at lower energies (large t), whilst only rendering the

full dimensionality of the fuzzy torus for higher energies (small t).

The analysis of the square fuzzy torus required the use of larger matrix sizes than

for the fuzzy sphere. This is due to the fuzzy sphere having a Dirac spectrum that

is a truncation of the continuum spectrum. Where the fuzzy torus is a dramatically

different spectrum, where very few of the eigenvalues match the continuum. It only

recovering the continuum values in the infinite matrix size limit.

The non-square fuzzy tori requires even larger matrix sizes than the unit square

fuzzy torus. This is because a fuzzy torus with parameters (a, b, c, d) and a matrix

size of N, is effectively ad− bc many copies of an (a, b, c, d) fuzzy torus with matrix

size N/(ad− bc). As a result the spectrum is that of a N/(ad− bc) torus repeated

ad− bc times. As such matrix sizes that are ad− bc larger are required to get qual-

itatively similar results to a square fuzzy torus of the same matrix size. This is an

effect of the cyclicity of the quantum number defined in section 2.3.2 as was shown

in fig. 17.

There are a number of ways to get a single number out as the dimension from the

spectral dimension and variance, as they are scale dependent dimensional measures.

It is clear that it is not necessarily the global maximum of the spectral variance but

rather the height of the plateau closest to the origin. This definition is a little vague

and further work is required to develop a more rigorous statement. However for the

random geometries there is only one extremum which avoids this issue.

When considering the random fuzzy geometries there are two main ways to go

about calculating the spectral measures. The first is to calculate the spectral vari-

ance for each geometry in the ensemble and average. The second is to take the

(increasingly ordered) eigenvalues of each geometry within the ensemble, average

the eigenvalues and then apply the spectral variance. A comparison of the two ap-

proaches was presented for the type (2, 0) geometries, where it was seen that away

from the phase transition both procedures produce very similar results. Near the

phase transition however the two methods produce slightly different results. By ap-

plying the spectral variance to samples taken from the simulation, it was shown that
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all the geometries before and after the phase transition behave qualitatively different.

Notably, all the geometries before the phase transition behave similar to each other,

and all the geometries after the phase transition also behave like each other. Near

the phase transition, the sample contained a mix of geometries from before and af-

ter the transition. Which lead to a larger variance in the averaged eigenvalues and

therefore a larger variance in the spectral measures.

Despite this the resulting spectral variances are not drastically different with the

main differences showing when t is large. The maximum for instance, is minimally

changed. The spectral variance also verifies the findings of [63] that the type (1, 1)

random geometries behave differently when compare with the type (1, 3) and (2, 0).

With the spectral variance undergoing a smooth increase through the phase transi-

tion, whereas for the other types the spectral variance experiences a drastic increase

in value near the phase transition and remains there afterwards.

An interesting feature was found by examining the maximum of the spectral vari-

ance as a function of the action coupling constant g2 for the different sizes of matrices

considered. For the type (2, 0) and (1, 3) geometries the maximum of the spectral

variance appears to be independent of the matrix size exactly at the phase transition.

With it decreasing/increasing with the matrix size before/after the phase transition.

This has the effect of making the plot of the maximum (fig. 21) have a steeper tran-

sition as the matrix size increases yet the value at the phase transition remains ∼ 2.

This behaviour is unexpected and suggests that the behaviour of the random geome-

tries might be independent of the matrix size at the phase transition. This fact alone

provides motivation for further study into the random geometries. Specifically, with

larger matrix sizes the behaviour may become clearer.

Two volumes measures were investigated. One based upon the Dixmier trace and

another based upon the work by Stern [66]. The Stern procedure is similar to the

Dixmier trace with the main advantage of converging faster. The main obstacle for

defining a volume measure is that they typically depends on the dimension, and

the measures introduced here are not exempt from this. However for the case of

the fuzzy sphere and fuzzy torus the dimension is taken to be 2 and both measures

163



conclusion and discussion

produced respectable results. With the Stern volume converging to the continuum

value rapidly. By using the value of the spectral variance vs(t) as the dimension

for varying t, the volume measures were able to made scale-dependent. With the

results for the N = 90 fuzzy torus being shown in fig. 23. This shows the dimension

measures to be closest to the continuum value when the spectral variance is closest

to the continuum dimension value at small t.

For the random fuzzy spaces the maximum of the spectral variance is taken as the

dimension. The volume measures are then applied with this value for the dimension.

Due to the face that the eigenvalues for the random geometries are constrained to lie

with an interval ∼ [−3, 3] about the origin, the volume increases as the matrix size

is increased. This is a result of the eigenvalues being more densely packed instead

of attaining greater values. This has the analogous effect in continuum geometry of

forcing the points in the space to become further apart, and thus the volume to be

larger. Despite this, there is a clear behavioural change in the volume graphs that

coincides with the phase transition.

There was an attempt to counteract the action enforce scaling by multiplying the

eigenvalues with a Weyl’s law factor N1/d. This succeeded in removing the N de-

pendent growth of the volume and provided us with fig. 25. It is shown that before

the phase transition the geometries were roughly the same size and at the phase

transition the volume undergoes an abrupt change. Especially for the type (2, 0)

which had the strongest phase transition.

The work of Stern [66] also provides us with a mechanism to access the further

poles of the spectral zeta function and therefore further geometrical quantities. It

would be intriguing to develop a measure for the second heat kernel coefficient as

this is intimately related to the integral of the scalar curvature. Which then could

plausibly be used to define a Einstein-Hilbert type action for fuzzy spaces. The

higher heat kernel coefficients have a less clear geometric interpretation.

The zeta distance introduced at the end of chapter 3 allows us to quantitatively

compare fuzzy spaces to each other and fuzzy spaces to continuum spaces. This

confirmed the intuition that the fuzzy spheres become more alike and become closer
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(spectrally) to the continuum sphere as the matrix sizes increase. This result was

also found for the fuzzy tori. This zeta distance is particularly informative when

applied to the random geometries. It is found that the geometries are closest to that

of a fuzzy sphere near the phase transition (including for the type (1, 1) geometries).

This provides a quantitative statement equivalent to the findings of [61]. That the

random fuzzy spaces are the most manifold-like near the phase transition.

The final chapter aimed to explore the consequence of a manifold possessing a Lie

group symmetry has on the different structures defined upon it. Specifically the aim

was to understand how the group action manifests in terms of a symmetry of the

Dirac operator. In turn, all G-equivariant differential operators on a homogeneous

space G/K were described as elements of End(V) ⊗ U (g) which are K-invariant.

The existence of spin structure on the homogeneous space is described in terms

of the existence of a lift of the isotropy representation to the spin group. When

such a lift exists, the G-invariant differential operators on a spinor bundle can be

classified in a Lie algebraic way. This characterisation strikes a resemblance to the

fact that the Dirac operators for a fuzzy space are members of End(V)⊗ End(Mn(C))

and investigating this link is left to future work. The possible SU(2)-equivariant

Dirac operators on the type (1, 3) and (0, 3) fuzzy spaces are investigated. They are

found to take one of two forms in either case, with the forms in the type (1, 3) case

being chiral rotations of each other. It was shown that all the Dirac operators found

produce the round metric for the sphere, despite the operator being different from

the usual Grosse-Prešnadjer or Barrett operators. Thus the G-equivariance does not

appear to be enough to select the Levi-Civita connection.

Looking to possible avenues of future research there are some obvious pathways.

With regards to the random geometries investigated, the main limitation was that

only small matrix sizes were investigated. With the maximum size studied here

being 10 by 10 matrices. Despite the fuzzy torus being a particularly special fuzzy

space, one that possesses a symmetry, most of the measures defined did not show

clear behaviour until around N = 15. For a general random geometry, larger matri-

ces are likely to be needed to investigate their properties with confidence.
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The work of Stern has allowed for a spectral expression for the second heat kernel

coefficient, which is related to the integral of the scalar curvature. Investigating the

curvature of fuzzy spaces would be highly interesting and this outlines a direction

of study to this effect.

Another avenue of research is to investigate G-equivariant Dirac operators on

fuzzy spaces for different Lie groups, G. For instance is it known that CPn for odd

n are spin manifolds and also coadjoint orbits of SU(n + 1). So by investigating the

possible SU(n + 1)-equivariant Dirac operators on fuzzy spaces for odd values of n,

may lead to a description of fuzzy CPn that satisfies the axioms laid out in section 2.2.

For even values of n it is known that CPn are not spin manifolds but spin-c [62].

There are also constructions being developed that may incorporate a larger class of

geometries such as spin-c geometries. Most of these involve relaxing some of the

axioms outlined in section 2.2. The most common approach to allow generalised

real-structures that satisfy a modified first order condition. [133, 134, 97, 135, 98,

136, 137]. Thus, there may still be some understanding gained when considering

SU(n)-equivariant Dirac operators for even n to this effect.

There is also related work, in the direction of twisting the real structure, to move

from Euclidean signatures to Lorenzian signatures [138, 139]. A possible avenue of

study is to investigate if a characterisation is possible of the finite versions of these

so-called twisted spectral triples, similar to that provided by Barrett for real spectral

triples in [46]. If so this could lend itself to exploration via Monte Carlo methods as

was done discussed in this thesis.

In the Lie theoretic description of the fuzzy sphere presented in chapter 4, explicit

use of the isotropy group K did not come into play 1. This is most likely due to

their only existing one non-trivial homogeneous space of SU(2). Looking at the

case for SU(3), there are multiple different possible homogeneous spaces one can

form. Selecting one boils down to choosing a specific choice of isotropy group K.

Investigating how to implement the K-invariance conditions in fuzzy geometry is

1 It is used in the definition of the algebra of functions for the continuum case appendix A, but for
fuzzy spaces this is not currently understood.
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therefore a necessary step in order to define objects such as fuzzy CPn. A reasonable

approach comes from the study of Dirac operators in representation theory. The

Dirac operators on homogeneous spaces then correspond to the K-invariant elements

of End(V)⊗ g for a specific adjoint action of K. This framework seems likely to be

adapted to the fuzzy geometry case.

Overall, the aim of this thesis was the explore the world of noncommutative ge-

ometry through analysis of fuzzy spaces. Tools were developed to investigate and

understand the unusual geometry these spaces possess. It was shown that manifold-

like fuzzy spaces can be extracted from a path-integral over all fuzzy spaces. Also, as

there exists fuzzy spaces which possess a full Lie group symmetry, such as the fuzzy

sphere and fuzzy tori. This suggests that a fuzzy space which is Lorentz invariant

could well be possible, once Lorentzian geometries are included into the framework

of noncommutative geometry.

All of this promotes the idea that the development of a fuzzy space analogue of the

Einstein-Hilbert action could be possible, complete with its full symmetries. Such a

development would put noncommutative geometry onto similar lines of investiga-

tion as other quantum gravity models, such as LQG, CDT and causal sets. With the

standard model already being described by a finite spectral triple, NCG provides a

possible framework to investigate the unification of gravity and the rest of physics.
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A
A L G E B R A O F F U N C T I O N S F O R C O A D J O I N T O R B I T S

In this appendix we collate the results necessary to describe the algebra of functions

of coadjoint orbits/homogeneous spaces in terms of their representation theory.

Using the identification of coadjoint orbits of compact Lie groups, G, with ho-

mogeneous spaces of the form G/K, where K is a closed subgroup (equal to the

coadjoint-stability group of a given weight 0 6= µ0 ∈ g∗). We then view functions on

the coadjoint orbit as functions on the homogeneous space G/K. Denote the space of

continuous functions on G/K as C(G/K), these can be either real or complex valued

(determined by context or explicitly specified). Let C(G) denote the space of contin-

uous functions on the entire Lie group G. Then the algebra C(G/K) can be viewed

as a subalgebra of C(G) such that the functions f ∈ C(G) satisfy f (xk) = f (x) for

all x ∈ G and all k ∈ K, i.e. C(G/K) are the right K-invariant functions on G.

Definition 57. Let G be a compact Lie group, and let (π, V) be a unitary finite

dimensional representation of G. Any function on G of the form fu,v(g) = (π(g)u, v)

for u, v ∈ V is said to be a matrix coefficients of the representation (π, V). The space

of matrix coefficients is denoted by MC(G).

Proposition 15 (Theorem 3.21. Sepanski [123]). The space of matrix coefficients, MC(G),

coincides with the space of G-finite vectors of C(G),

C(G)G− f in = { f ∈ C(G) | dim(span{lg( f ) | g ∈ G} < ∞}, (296)

where lg( f )(x) = f (g−1x) for all g, x ∈ G.
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Remark 7. Note that there is a right action of G on C(G) given by rg( f )(x) = f (xg),

and it turns out that the set { f ∈ C(G) | dim(span{rg( f )‖‖g ∈ G} < ∞} is the same as

C(G)G− f in, so we can unambiguously talk about the G-finite vectors.

Theorem 9 ([123]). Let G be a compact Lie group. As a G × G-module with (g1, g2) ∈
G× G acting as rg1 ◦ lg2 on C(G)G− f in, we have that:

C(G)G− f in
∼=
⊕
π∈Ĝ

E∗π ⊗ Eπ (297)

where Ĝ is the set of equivalence classes of irreducible (unitary) representations of G and

C(G)G− f in = { f ∈ C(G) | dim(span{g · f | g ∈ G} < ∞}

Theorem 10 ([123]). Let G be a compact Lie group. Then C(G)G− f in is dense in both C(G)

and L2(G). (Note that C(G) is also dense in L2(G) so by the transient property of denseness

we it suffices to show that G(G)G− f in is dense in C(G).)

As we need A = C∞(G) and A = C∞(G/K), we note that the smooth functions are

dense in the (compactly supported) continuous functions and therefore dense in L2-

functions. So we can approximate any function by a sequence of smooth functions.

Corollary 2 ([123]). Let G be a compact Lie group. Considered as a G × G module with

action r ◦ l as above, we have that:

L2(G) ∼=
⊕̂

π∈Ĝ
E∗π ⊗ Eπ (298)

Given that the space of matrix coefficients MC(G) is the same as the space of G-

finite vectors of C(G), we have that we can write any continuous function or square-

integrable function as a limit of matrix coefficients by the above theorem. Given a

unitary irreducible representation of G we have that f ∈ C(G) can be expressed as

f (g) = ∑
π∈Ĝ

f π(g) (299)
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where

f π(g) =
dim(π)

∑
ij=2

cπ
ij f π

vivj
(g), (300)

where the vi and vj are orthonormal basis elements in the representation (π, V) and

cπ
ij are just coefficients. To clear up the notation we will write:

f (g) = ∑
π∈Ĝ

dim(π)

∑
i,j=1

cπ
ij f π

ij (g). (301)

This is often expressed in another notation using Wigner D-matrices, here we have

that π ∈ Ĝ is replaced by J labelling irreps and then D J
mn(g) = f π

vmvn(g).

The coefficients cπ
ij are defined by

cπ
ij = dπ

∫
G

f (g) f π
ij (g)dg (302)

Theorem 11 (Section 2.3.7, Theorem 1. [140]). Any continuous function from a linear

compact group G can be uniformly approximated by linear combinations of matrix coefficients

f π
ij , for π ∈ Ĝ, and 0 ≥ i, j ≤ dπ, where dπ is the dimension of the representation space Vπ.

Theorem 12 (Section 2.3.9, Theorem 1. [140]). Let H be a subgroup of G. Let L2
H(G) be

the subspace of right H-invariant functions of L2(G). Then any functions f ∈ L2
H(G) can

be expanded in the following way:

f (g) = ∑
α∈Ĝ/H

dα

∑
i=1

kα

∑
j=1

cα
ij f α

ij(g) (303)

The question is then what is C∞(G/K), L2(G/K) and C0(G/K) in terms of the

decompositions given above? C(G/K) are all the right K-invariant functions, we see

that the right action r when restricted to K is trivial. Meaning we have that:

Theorem 13 ([123]).

L2(G/K) ∼=
⊕̂

π∈Ĝ
Eπ ⊗ (E∗π)

K (304)

where EK
π are representations of G such that π(gk) = π(g) for all k ∈ K.
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We see this by making use of the fact that rk f = f for all k ∈ K, and using the

expansion

rk f (g) = f (gk) = ∑
j,m,m′
〈j, m′|π j(gk)|j, m〉 = ∑

j,m,m′
〈j, m′|π j(g)π j(k)|j, m〉 (305)

= ∑
j,m,n
〈j, m′|π j(g)|j, n〉〈j, n|π j(k)|j, m〉 (306)

, where repeated indices are summed over, j labels the irreps π and m, m′ index an

orthonormal basis of the representation. As we require this to be equal to f , we

require that 〈j, n|π j(k)|j, m〉 = δnm, which is equivalent to saying that π j(k)|j, m〉 = 1

for every m.

Example 9. We often see statements about ”the functions on the sphere can be decomposed

in spherical harmonics”. This type of statement is a restatement of the above construction,

where S2 = SO(3)/SO(2) ∼= SU(2)/U(1), and then the matrix coefficients can be related

to the spherical harmonics, in the following way: we write g ∈ SU(2) in the following

parametrisation g = e−iαJz e−iβJy e−iγJz where Ji are the standard hermitian generators for

the Lie algebra su(2). For S2 ∼= SU(2)/U(1), we take the representation of U(1) =

diag(eiθ, e−iθ) = exp(−iθ Jz). The finite-dimensional irreducible unitary representations of

su(2) are indexed by a non-negative integer l and have dimension 2l + 1. We can find a basis

of each representation denoted by {|j, m〉}l
m=−l so we have that πj(Jz)|j, m〉 = m|j, m〉. In

order for πj(diag(eiθ, e−iθ)|j, m〉 = πj(e−iθ Jz)|j, m〉 = |j, m〉, we need that m = 0.

f
πj
m0(g) = D J

m0(α, β, γ) = (−1)m

√
4π

2j + 1
Y−m

l (α, θ) (307)

So if we let Vl be the vector space spanned by all the spherical harmonics Ym
l , where

m = −l,−l + 1, ..., l − 1, l. Then we can write that

C(G) =
∞⊕

l=1

Vl. (308)
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[87] Tomasz Brzeziński. On the Smoothness of the Noncommutative Pillow and

Quantum Teardrops. Symmetry, Integrability and Geometry: Methods and Appli-

cations, 2013.
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