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1 Literature Review

The aim of this literature review is to outline the setting in which my current work lies. To do this,
a brief physical motivation is provided to explain why the study of noncommutative geometries
is interesting to those who wish to achieve a theory of quantum gravity. Then a more detailed
review of finite noncommutative geometry as noncommutative analogues to well known spaces will
be presented.

One of the problems to overcome with a quantum theory of gravity is that the current frame-
work for gravity requires the space we, and all of physics, exist in to be described by a manifold.
Manifolds by construction allow for infinitesimally small regions of space to be a well defined
construct. And all of the physics we do over this manifold, is required to deal with these infinites-
imally small regions. It is this feature that causes the incompatibility between our understanding
of gravity and out quantum theory of the other forces we know of. Some of the more well known
approaches to quantum gravity aim to fix this problem by make space discretised. By making
the space on which everything exists on to be built up from some smallest building blocks, they
circumvent this problem. However, different problems arise and there is much research into pro-
ducing a framework built on these principles that is satisfactory [1]. The other main approach is
string theory, which was found to be connected to gravity by the fact that one of the string modes
corresponds to the graviton, the hypothetical force boson for gravity. However there are issues
with string theory, which include its reliance on supersymmetry. A proposed new symmetry that
means every particles currently known has a supersymmetric partner. However, no evidence has of
supersymmetry has been seen and this coupled with the lack of predictive power of string theory
make it a undesirable framework to currently research.
Noncommutative geometry is being investigated as a model for quantum gravity for two main
reasons. The first is that the standard model of particle physics can be expressed as a finite
noncommutative geometry [2]. Which then under the framework of spectral triples, puts general
relativity and particle physics in the same framework (see below for how manifolds are expressed as
noncommutative geometries) making unification of the forces a realistic future of the theory. Also
the idea of noncommutative geometry is to make the algebra of functions to be noncommutative,
which would make the positions on the space no longer commute, making the notion of a point
ill-defined. This is an exciting feature for a potential theory of gravity, because it would make
our understanding of quantum mechanics and gravity both regularise all of the divergences that
usually appear in the standard way of trying to make gravity a quantum field theory.

1



A problem with discretised models such as loop quantum gravity and causal set theory is their
lack of familiar structure, and a lot of work goes into setting up various structures that exist
in normal differential geometric approaches. This problem is also present in the framework of
noncommutative geometry. A brief outline of the fundamentals of noncommutative geometry is
given below in Appendix A.

Noncommutative geometry is an extension of normal commutative geometry where the commu-
tativity refers to the algebra of continuous functions defined on a topological space always being
a commutative algebra. For instance, a Riemannian manifold always has a commutative algebra
associated to it, C∞(M), which is all of the smooth functions defined everywhere on the manifold,
where the algebra structure is provided by pointwise multiplication and addition. I.e given two
functions f, g : M → R we define fg and f + g as follows

(fg)(x) = f(x)g(x) (1)

(f + g)(x) = f(x) + g(x). (2)

The task of noncommutative geometry is to try and explore spaces where this algebra of smooth
functions is no longer commutative.

Originally the space was taken to be a topological spaces and then using the Gelfand duality
between topological spaces and commutative C∗-algebras as a guideline, efforts to extend this
duality to noncommutative algebras and seeing what sort of geometric objects resulted from the
procedure was undertaken. It was also shown that there exists a duality between a compact
Riemannian spin manifolds and an algebraic structure called a commutative real spectral triple [3].
An aim of noncommutative geometry is to try extend this duality to where the algebra (of smooth
functions) involved in the spectral triple is noncommutative [4, 5]. Efforts to relax some of the
other conditions on the manifold are being investigated, such as the work on Lorentzian spectral
triples [6–11] and noncompact geoemtries [12,13].

This is where the field branches into different subtopics, and where we will follow only one.
Depending on what correspondence between the geometrical world and the algebraic world you
want to focus on specifies which area of noncommutative geometry you end up work in. The focus
for the rest of this report will be on the differential nature of geometries, which follows the work
of Connes mentioned above1.

1.0.1 Noncommutative analogues to manifolds

A lot of work has gone into trying to find noncommutative spectral triples that have the behaviour
of a manifold2. The most famous example is that of the Fuzzy Sphere [4] which constructions a
noncommutative spectral triple, where the algebra is a finite matrix algebra and the Dirac operator
is invariant under the action of su(2), the Lie algebra of SO(3). The construction of the fuzzy
sphere as a spectral triple is outlined in Appendix B.

The fuzzy sphere highlights one of the reasons why there is current research into noncommu-
tative geometry as a quantum gravity pathway. There is an interpretation of the fuzzy sphere as
being a sphere but with cutoff in the spectral harmonics which is described extensively in [14].
Given the algebra of functions C(S2), we can decompose this space into a direct sum of irreducible

1See AppendixA for a the basics of spectral triples
2This is purposefully vague as you can’t recover all the behaviours of a manifold and still be dealing with

noncommutative geometry, so there is a choice in which behaviours you want to exhibit
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representations of su(2):

C(S2) '
∞⊕
l=0

Vl (3)

where Vl is the vector space underlying the irreducible representation of su(2) with the highest
weight l ∈ N which is spanned by the spherical harmonics Yl,m. We can then impose a cutoff in the
energy spectrum by ignore all but the first n + 1 representations in the decomposition of C(S2).
Thus, in the fuzzy sphere’s spectral triple we can take the fuzzy spherical harmonics3 Ŷl,m to be
the generators of Mn+1(C), where4 l < n. We can then decompose the algebra into

An '
n⊕
l=0

Vl (4)

As the spherical harmonics correspond to higher angular momentum modes, the fact that there
is a cutoff in l can be interpreted as having a maximum angular momentum and thus energy for
the space. As we can view a maximum energy as an equivalent minimum region we can probe,
the fuzzy sphere can be viewed as having a minimal renderable distance, i.e. a Planck length. The
implications of a planck length being a natural outcome of requiring the underlying space to be
noncommutative is a very appealing property and the idea is that a noncommutative analogue to
a spacetime will provide a good model for quantum gravity.

2 Overview of attained results

One of the main drawbacks of noncommutative geometry is the lack of any familiar differential
calculus. With the notion of coordinates being ill defined, derivatives and integrals are also hard
to express. However, there is a mechanism for integration over the noncommutative geometry and
also there are frameworks for a differential calculus, but they have some caveats and intricacies
to work out (see [16] for a review of the developments.). However, the other tools we usually
have in geometry to describe certain spaces are few and far between. The notions of curvature and
dimension are all lost in the translation. So much of the research conducted is to create spaces that
have some familiar traits, and also to develop measurements we can take of these spaces that give
us a way to categorise them. So far, the spaces well described all have some Lie algebra symmetry
underlying them. The easiest to grasp is that of a fuzzy sphere mentioned before. Determining
what dimension the fuzzy sphere is a non-trivial question due to the fact that its algebra is finite
dimensional, many of the proposed dimensional measures proposed do not yield results for such
spaces. So methods of determining the dimension of a fuzzy sphere has been explored and also
applied to the random fuzzy geometries of [17] and also a fuzzy torus being developed by [18].
These methods are based on the spectral properties of the heat kernel trace and the spectral zeta
function.

3 Research Plan for the next 12 months

1. Finish Spectral Dimension and Zeta function paper with John and Lisa August/September
2017

3These are matrix versions of the spherical harmonics, there precise construction can be found in [15].
4Note that the reason l < n not l < n+ 1 is because the index l starts at zero. So there are still n+ 1 generators

for Mn+1(C)
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2. Research Dirac operators on coadjoint orbits (and their generalisation when they don’t exist
in the normal sense)

3. Research the difference between Lie derivative and covariant derivative on spinor fields. This
will be closely related to the coadjoint orbit work.

4 Time table for drafting Thesis

Once the paper for the zeta function is submitted, I’ll start writing up the section of zeta functions
and all the necessary details. If the submission is delayed, I will start writing the thesis section in
September/October 2017.

Once I have a section on the zeta function, this will lead me to introduce various topics.
Which I will use to flesh out the document. So as December arrives, I’ll be writing up the basics
needed, trying to not be too mathematically heavy where I can, otherwise it will be a long arduous
document. By April 2018 I should have produced some new work on the topics mentioned above,
which again will lead me to writing up new background and new chapters. Which will start around
April if all goes well. The finishing of the thesis will be set into full motion in August/September
2018, when all research will stop and I know what topics I will be dealing with.

5 A substantial piece of work demonstrating clear and co-

herent maths.

5.1 Spectral Zeta Functions, Heat Kernels and Geometry

The aim of spectral geometry as a whole is to try and recover the geometric information of various
types of space (Riemannian manifolds, metric spaces etc) by examining the spectrum of their var-
ious operators. The most famous example is by studying the Laplacian of a Riemannian manifold
and trying to determine the dimension, volume, integral of the scalar curvature etc. For operators
on finite dimensional vector spaces or for compact operators the spectrum is just the set of eigen-
values of the operator. However for more complicated objects, like Riemannian manifolds or when
the operator acts on an infinite-dimensional vector space, the spectrum contains the eigenvalues
and other values which are not eigenvalues.

The operator we are concerned with is that of the Dirac Operator which can be defined local
on any spin manifold as

/D = ieµaγa∇µ (5)

where eµa are vielbeins5 and γa are the flat gamma matrices which generalise the Pauli matrices
and Dirac matrices to higher dimensions. The main motivation for studying the Dirac operator
over other operators is because of the Reconstruction theorem by Alain Connes. This states
that given a commutative real spectral triple you can recover a unique compact manifold and
Riemannian metric such that the algebra is the algebra of functions, the Hilbert space is the twice
integrable spin sections and the self adjoint operator is the Dirac operator. This is a powerful
spectral theorem, as such statements for the laplace operator lack uniqueness due to isospectral
laplacians [19]. From here onwards we will refer to a smooth compact Riemannian manifold as just

5These are sometimes refered to as frame fields in the context of general relativity and in general they are a local
orthonormal basis for the tangent bundle.

4



a manifold. A method to extract information about a manifold from its Dirac operator spectrum
is by studying the spectral zeta functions. Traditionally the Laplace operator is the object studied
via spectral zeta functions, however much of the theory is valid for operators of Laplace-type.
These are second order differential operators,P , such that P = ∆ + E, where E is a zeroth order
differential operator. If we have a first order operator D such that D2 is of Laplace type then we
say that D is of Dirac-type. We will be examining the spectral zeta function (SPζ) of the Dirac
operator squared, which can be see to be of Laplace-type from the Lichnerowicz formula [20, 21].
Let {λi} be the set of non zero eigenvalues of a Dirac operator, D. Then the spectral zeta function
of the Dirac operator is defined as6:

ζD2(s) = Tr
(

(D2)
−s
)

=
∑
i

(λ2i )
−s
. (6)

To extract geometry from the SPζ we need to draw on another spectral invariant called the Heat
Kernel trace7 which is defined as follows

K(t) = Tr(exp
(
−tD2

)
). (7)

We can then make use of the fact that the spectral zeta function is the inverse Mellin transform
of the spectral heat kernel:

ζD2(s) =
1

Γ(s)

∞∫
0

ts−1K(t)dt (8)

This expression can be inverted to express the heat kernel in terms of the zeta function:

K(t) =
1

2πi

∮
ds t−sΓ(s)ζD2(s) (9)

where the contour surrounds all the poles of the integrand. Note that these transforms work in
the case of a finite spectral triple and then the poles in (9) are just those of the gamma function.
The Heat Kernel for a Laplace type operator has an asymptoptic expansion as follows [22–24]:

K(t) ' t−d/2(a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + . . . ) (10)

where d is the dimension of the underlying space. Using this expansion, we can relate the residues
of the integrand of (9) to the expansion coefficients ak. We find that

ak = Ress= d−k
2

(Γ(s)ζD2(s)) (11)

where Γ(s) is Euler’s gamma function. It is known that the expansion coefficients are only non
zero for even values of k [25] and for even k they can be expressed in terms of local geometrical
invariants [26, 27]. The first two coefficients take the following geometric form:

a0(D
2) =

1

(4π)
d
2

Tr(Id)

∫
M

ddx
√
g (12)

a2(D
2) = − 1

(4π)
d
2

1

12
Tr(Id)

∫
M

ddx
√
gR (13)

6The conditions of the space in order for the zeta function to be expressed as a sum are that it’s compact in
terms of manifolds. However, for the finite spectral triples we aim to explore, the sum is also well defined.

7Often shortened to just Heat Kernel
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Figure 1: The SPζ for the continuum 2-sphere. The pole at s = d/2 = 1 indicates the dimension.

where here R is the Ricci scalar and the trace is over the spinor space. So we using equations (11)-
(13) we can use the residues of the zeta function to determine various quantities such as the volume
and curvature. Explicitly

V ol(M) =
(4π)d/2

Tr(Id)
Ress= d

2
(Γ(s)ζD2(s)) (14)∫

M

ddx
√
gR = −12

(4π)d/2

Tr(Id)
Ress= d

2
−1(Γ(s)ζD2(s)) (15)

For 2d manifolds, like the sphere which we use as a benchmark, the spinors are two dimensional,
which gives8 V ol(M) = 2πRess=1(ζD2(s)). Also for 2d manifolds the Ricci scalar is twice the
Gaussian curvature, and we can make use of the Gauss-Bonnet theorem to related the second heat
kernel coefficient to the Euler characteristic of the space.

χ(M) = −6Ress=0(Γ(s)ζD2(s)) = −6ζD2(0) (16)

We will use these results from the spectral geometry of manifolds as a guideline for the inves-
tigations into the spectral geometry of finite noncommutative geometries. For a manifold, the
spectrum is infinite, and the resulting zeta function (specifically its analytic continuation) has
poles at s = d

2
− ν for ν ∈ {0, 1, 2, . . . , bd/2c}.

An example of this is the continuum 2-sphere, for which the SPζ is proportional to the Riemann
ζ function with argument 2s− 1, and thus has a pole at s = 1 (c.f. Figure 1). For a fuzzy space,
such as those outlined in [28], we have a finite number of eigenvalues, and hence the sum in (6)
is finite, which automatically regularises the poles at s = d

2
, · · ·. For a noncommutative analogue

of a manifold, instead of a pole as s = d
2

we expect to see the series grow logarithmically. This
is due to the fact that on a d dimensional manifold the n-th eigenvalue of the Dirac operator
scales like λn ∼ n1/d for large9 n, so at s = d

2
, the zeta function is the sum of n−1, which diverges

logarithmically. We expect fuzzy spaces to express this behaviour as we increase the size of the
matrix algebra. If we have N � 1 eigenvalues, then the series diverges log(N). Using the fact
that the zeta function series value at s = 0 precisely counts the number of eigenvalues when dealing
with finite spectra. We can scale the zeta function by log(ζD2(0))1 and locate the value of s at

8The Gamma function is well defined at s=1, and thus all the residue lies in the zeta function. Also the value
of the Gamma function at s=1 is 1.

9This comes from Weyl’s law for the Dirac operator.
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Figure 2: The MPζ for the fuzzy 2-sphere for different n.

which the zeta functions for various matrix sizes are equal, which would indicate the location of a
pole in the infinite N limit. I.e the hypothesis is that the value of s where we have

ζD2
n
(s)

log
(
ζD2

n
(0)
) =

ζD2
m

(s)

log
(
ζD2

m
(0)
) (17)

will limit to the location of the pole of the continuum SPζ which is at d
2
.

We can test this for the fuzzy sphere, the SPζ can be calculated as

ζD2
n
(s) = 2n(n2)

−s
+ 4H

(2s−1)
n−1 (18)

with Hn the Harmonic numbers [29],

Hr
n =

n∑
k=1

1

kr
. (19)

At s = 1 this reduces to

ζD(2) = 2n−2 + 4Hn−1 , (20)

which in the limit n→∞ behaves as log n+ γ +O(1/n).
In the left hand plot of figure 2 ww show the spectral zeta function for the fuzzy sphere divided

by logN . The point of intersection is where we expect to read of the dimension, so to make this
move visible we plot the difference between consecutive N values in the right hand plot. The zeroes
of this can then be used as dimension estimators.
Fuzzy Torus
The fuzzy torus setup is very similar to that of the fuzzy sphere, except the Dirac operator is
different. The Dirac operator is a combination of gamma matrices and commutators of the ‘clock’,
C, and ‘shift’ operators, S which satisfy the relation CS = qSC, where qN = 1 for some natural
number N . The spectrum of the operator is a complicated expression involing the use of so-called
‘q-numbers’, all details for the fuzzy torus will be presented in [18]. The important result involving
the fuzzy torus is that the above method still produces reasonable results for the dimension, shown
in Figure 3

To understand why this is particularly interesting we need to explore the formalism in which
all of the above theory for manifolds was built in.
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Figure 3: The SPζ for the fuzzy Torus for different n.

5.1.1 Volumes

Using the Dixmier trace defined in Appendix D we can see that the value of the SPζ rescaled by
log(N) is precisely one of the terms in Trω(D−2). For the fuzzy sphere, the terms aN are just
finite selection of the continuum spheres infinite series. However, the situation for the fuzzy torus
is different Which using the famous result of Eqn (35) we can relate the volume via Eq (14). The
volumes of the fuzzy sphere are shown in Table 1.

The same process is done for the fuzzy torus and the volumes are shown in FigureZ4.The reason
the fuzzy torus is particularly interesting is because the spectrum of Dirac operator is distinctly
different from that of the continuum torus. It is not just a subset of the continuum like in the
sphere case but a seemingly unrelated sequence aN as we increase the matrix size in the fuzzy torus
spectral triple. Which agrees with the Torus spectrum in the continuum limit, so the Dixmier trace,
will agree.

We have also applied this to the random spectral triples generated in [17] which is currently
being constructed in a paper with Lisa Glaser and John Barrett. Which makes use of the spectral
dimension and a new object called the spectral variance.

It is immediately clear that this definition of the dimension only works if we can examine
the same type of fuzzy space at different matrix sizes. While this is a disadvantage in so far as it
requires more computer power to examine, it is nice in so far as it only recovers manifold dimension
in the large matrix limit, hence giving a natural flow towards continuum physics. The techniques
sued to examine the random geometries do not require a family of spectral triples, but what we
can determine from such techniques is less that the SPζ.

10 20 30 40 50

39

40

41

42

Figure 4: Volume of the fuzzy torus vs the Flat Torus. Solid line = Flat Torus, data points =
volume of fuzzy torus.
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5.2 Random Geometries

Barrett and Glaser [17] made use of the general form of a Dirac operator based on a matrix
geometry spectral triple. The formula was presented in [28] and the setup goes as follows

5.2.1 Fuzzy spectral triples

To successfully describe a fuzzy spectral triple we have to deal with Clifford algebras over Rn. You
can view these as the tensor algebra generated by a set of elements in Rn, {γa} which satisfy the
relation:

γaγb + γbγa = 2ηab

where η is a diagonal matrix with ±1 in its entries. However, as we still require a Hilbert space in
our spectral triple, which in turn requires us to have a positive definite inner product. We require
that all the γa’s are unitary and we have the standard hermitian inner product (u, v) =

∑
i ūivi

on the Hilbert space. This requirement doesn’t impose any restrictions on the γa as they form
a finite group and finite groups always have a unitary representation [30]. Which just leaves us
to choose a basis of the vector space these elements act on, V , which will be the Hilbert space
of our spectral triple, such that the hermitian form is the standard one. Thus, if γ2a = 1 then γa
is Hermitian and if γ2b = −1 then γb is anti-Hermitian. Note that if η has p entries of +1 and q
entries of −1, then we say the Clifford module is of type (p, q), and the number s = p− q (mod 8),
called the signature of the clifford module, determines much of the characteristics of the Clifford
module. The signature, s, also coincides with the KO-dimension of the associated spectral triple.
Representing this Clifford algebra as complex matrices10, which act on a vector space V , provides
us with the Clifford module we require to define a fuzzy space.

Now let us define a type (0, 0) matrix geometry:

Definition 1. A type (0, 0) matrix geometry11 is a real spectral triple of KO dimension s0 = 0
and the following objects: (H0,A0, D0 = 0; γ0 = 1, J0)

It can be shown (see [28]) that all type (0, 0) matrix geometries are isomorphic to the case
when H0 is a C-linear vector subspace of Mn(C) such that if Cn with its standard Hermitian inner
product is a faithful left module of the algebra A0, we have that am ∈ H0 and also m∗ ∈ H0. If this
is the case then the representation of A0 on to H0 is just matrix multiplication, the real structure

10A Clifford module can be viewed as just representing a Clifford algebra as matrices. Hence the colloquial term
for the γa discussed above as gamma matrices.

11The term matrix geometries arises from examples of this definiton being made by matrix contstructions. To
see examples of how to construct some examples, see [28].

Table 1: The residue of the spectral zeta function at s = d
2

for the fuzzy spheres of different
algebra sizes. Here n is the matrix algebra dimensions and N is the number of eigenvalues of the
corresponding Dirac Operator

KO Dimension

n 10 100 200 300 455 1000 ∞
ζ
D2
n
(1)

log(N)
3.84409 3.91247 3.9226 3.92751 3.93194 3.93899 4

Volume 1.922045 1.956235 1.9613 1.963755 1.96597 2
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is just Hermitian conjugation J0(·) = (·)∗ and the inner product is just (m1,m2) = Tr(m∗1m2). It
can be shown that all the axioms for a type (0, 0) matrix geometry are satisfied by this collection
of objects (see [28]).

We are now ready to define a fuzzy geometry. First we take all of the algebras in question to
be simple algebras. Thats means A = Mn(C),Mn(R) or Mn/2(H). For the sake of brevity, the
assumption that A = MN(C) will be taken. Furthermore we impose that H0 = Mn(C), where
in the case of A = Mn/2(H) we express the quaternions as 2 × 2 complex matrices, such that
Mn/2(H) ⊂Mn(C)

Definition 2. Let V be a Clifford module of type (p, q) with chirality operator γ and real structure
C. For p+ q even let V be irreducible and for p+ q odd let the chiral subspaces V± be irreducible.
A fuzzy space is a real spectral triple with the following objects

• H = V ⊗Mn(C)

• A = Mn(C)

• Γ = γ ⊗ 1

• J = C ⊗ J0

where the inner product on H is defined by:

〈v1 ⊗m1, v2 ⊗m2〉 = (v1, v2)Tr(m∗1m2)

and the action of the algebra is just my multiplication on Mn(C), i.e. ρ(a)(v ⊗m) = v ⊗ (am).
The actions of Γ and J on an element of H are as follows:

Γ(v ⊗m) = γv ⊗m, J(v ⊗m) = Cv ⊗m∗

And the final object is the Dirac operator, D, where it can be shown (see [28]) that depending on
the sign of ε′, takes the following forms:

ε′ = 1
For this case we have that J and D commute and that 〈D(v1⊗m1), v2⊗m2〉 = 〈v1⊗m1, D(v2⊗

m2)〉, we have that the Dirac operator has to be of the form [28]:

D(v ⊗m) =
∑
i

αiv ⊗ [Li,m] +
∑
j

τ jv ⊗ {Hj,m} (21)

where αi are products of gamma matrices and both αi and Li are anti-Hermitian matrices, and
where τ j are products of gamma matrices and both τ j and Hj are Hermitian matrices.

ε′ = −1
For this case, we have that J and D now anti-commute and also note that C anti-commutes

with the γa in such cases, so we need to split the sums into sums where we have a product of
even or odd number of γa. However we still require D to be self-adjoint, so we still require D to
have either entirely Hermitian or entirely anti-Hermitian entries. This leaves us with the following
form [28]:

D(v ⊗m) =
∑
i

αi−v ⊗ [Li,m] +
∑
j

τ j−v ⊗ {Hj,m}

+
∑
k

αk+v ⊗ {Lk,m}+
∑
l

τ l+v ⊗ [Hl,m] (22)

where the + or − subscript on α, τ indicates whether they are the product of an even number of
γa, indicated by +, or by an odd number of γa, indicated by a −.
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Figure 5: Volume of type 11 and type 20 with dimension determined by the maximum of the
spectral variance. The phase transition value for type 11 is around 2.3 and for type 20 is around
2.7

This construction lends itself to Monte Carlo simulation [17], where the entries L,H in the
Dirac operator are randomly generated, and the partition function is Z =

∫
G S(D)dD. Where the

action S(D) that we will be using at is of the form S(D) = g4D
4 + g2D

2, which under the scaling
of the Dirac operator by some constant, can rescaled g4 = 1 (assuming g4 6= 0 to begin with). A
phase transition was found in [17] and it is claimed that it is at this phase transition that manifold
behaviour is expected to be observed. So some spectral measurements like those above for the
sphere and torus were tested.

Volumes for the different types presented in [17] have been calculated, however there is a choice
here of scaling as the simulation restricts the eigenvalue range to a fix region about the origin,
with bigger matrix geometries just more densely packing the region. This artificial restriction is
to do with the rescaling of the g4 value. However, we can use the spectral dimension/variance to
determine the dimension of each random geometry. Then we can use this to scale the eigenvalues
to be N1/d, where N is the number of eigenvalues. This is the feature that the SPζ relies on.
Testing with integer values of d were tested, however, these are less desirable as the require ad-hoc
assumptions. The volumes of this geometries are should for the spectral variance scaling are shown
in Figures 5-6.

The volumes highlight the fact there are distinct behaviours that these geometries exhibit
depending on the value of g2, and motivate further research into these geometries.

A A brief introduction to spectral triples

Definition 3. A spectral triple is a triple (H,A, D), where:

• H is a Hilbert space

• A is a ∗-unital algebra represented as bounded operators on H.

• D is a self-adjoint operator on H such that the resolvent (i+D)−1 is a compact operator
and [D, a] is bounded for each a ∈ A.
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Figure 6: Volume of type 13 with dimension determined by the maximum of the spectral variance.
The phase transition value for type 13 is around 3.7

Table 2: The KO dimension, n, of a real spectral triple is determined by the signs ε, ε′, ε′′.

KO Dimension

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1

ε′ 1 -1 1 1 1 -1 1 1

ε′′ 1 1 -1 1 1 1 -1 1

We often require additional structure to our noncommutative geometries if we require them to
be appropriate generalisations of Riemannian spin geometries. The first is a Z2-grading γ on the
Hilbert space H such that:

γa = aγ (∀a ∈ A), γD = −Dγ

If such a γ exists then we the spectral triple is said to be even. The second is an anti-linear map
J : H → H such that:

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (when γ exists)

where ε, ε′, ε′′ take values from Table 2. We also require If such a J exists then the spectral triple is
said to be real and J is referred to the as the real structure. The values for ε, ε′, ε′′ are determined
by the KO dimension of the real spectral triple, which for the spectral triple of a Riemannian spin
manifold will be equal to the dimension of the manifold modulo 8.

B The Fuzzy Sphere

The fuzzy sphere is described by the spectral triple, (Mn(C), V ⊗Mn(C), DFS). Where the Dirac
operator, DFS is given by

D = γ0 +
3∑

i<j=1

γ0γiγj ⊗ [Lij, ·] (23)
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where Lij are n-dimensional representations of the generators for the Lie algebra so(3) which satisfy
Lij = −Ljk and

[Lij, Lkl] = δjkLil + δilLjk − δjlLik − δikLjl (24)

with the fact that Lij = −Ljk. This form of the fuzzy sphere is given by Barrett [28], which
differs slightly from the likes of Madore [4] in that its defined as a spectral triple whereas Madore
does not present the Dirac operator. And it differs from Grosse-Prešnajder [31] in that the the
K0-dimension of the spectral triple is equal to 2, whereas G-P K0-dimension is equal to 3. And
in the continuum limit (n → ∞) is it though that the K0-dimension should match that of the
normal sphere which is equal to 2. It is possible to arrive back at the Grosse-Prešnajder Dirac
operator as done by Barrett in [28], and for reference later on the form of the Grosse-Prešnajder
Dirac operator is:

DG-P = 1 +
3∑

i<j=1

σiσj ⊗ [Lij, ·] (25)

The Dirac operators both yields the spectrum

Spec(D) = ±1,±2,±3, · · · ± n− 1,+n (26)

with the difference taking form in a disagreement of multiplicities of the values12. So as we let
the matrix size tend to infinity we retrieve the spectrum ±Z, which is the spectrum for the Dirac
operator on the commutative 2-sphere.

C Pseudodifferential Operators

Pseudo-differential operators are generalisations of differential operators in a specific way. So first
lets define a differential operator. Note that there are equivalent definitions of differential and
pseudodifferential operators that are coordinate free which lends themselves to use in noncommu-
tative geometry. Such definitions require the use of jets and jet bundles, which are construction to
allow a coordinate free expression of taylor series however for simplicity we will stick to definitions
involving coordinates.

Definition 4. A differential operator, P , is given by a linear combination of derivatives given
locally as

P (x,D) =
∑
|α|≤m

aα(x)Dα (27)

where α = (α1, . . . , αn) ∈ Z+
n is a multi-index. Dα = Dα1

1 D
α2
2 . . . Dαn

n

This acts on smooth functions with compact support in Rn. However, by utilising Fourier
transforms, one can view this as multiplication by

P (ξ) =
∑
α

aαξ
α (28)

in Fourier space and then inverse Fourier transforming back. This can be expressed as

P (x,D)u(x) =
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)ξP (ξ)u(y)dydξ. (29)

We can now generalise to pseudo-differential operators

12The Barrett fuzzy sphere Dirac operator exhibits fermion doubling.
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Definition 5. A pseudodifferential operator P (x,D) on Rn is an operator whose value on the
function u(x) is

P (x,D)u(x) =
1

(2π)n

∫
Rneix·ξP (x, ξ)û(ξ)dξ (30)

where û(ξ) is the Fourier transform of u(x) and P (x, ξ) belongs to a certain symbol class Sm1,0. This
equates to P (x, ξ) being infinitely differentiable on Rn × Rn and such that

|Dα
ξD

β
ξP (x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| (31)

for all x, ξ ∈ Rn and for all multi-indices α, β. Cα,β are some constants and m is just a real number.
We say then that the differential operator P (x,D) belongs to the class Ψm

1,0

D Dixmier Trace

Definition 6. Let T be a compact linear operator on a Hilber space H such that the following
norm is finite

‖T‖1,∞ = sup
N

∑N
i=1 µi(T )

log(N)
<∞ (32)

where µi(T ) are the eigenvalues of T arranged in descreasing order. Let

aN =

∑N
i=1 µi(T )

log(N)
(33)

then the Dixmier trace is
Trω(T ) = lim

ω
(aN). (34)

Where limω is a scaled invariant extension of the usual notion of a limit such that:

• limω(aN) ≥ 0 if an ≥ 0

• limω(aN) = lim(aN) when it exists in the normal sense

• limω(a1, a1, a2, a2, . . . ) = limω(aN)

The famous result by Connes [32] which states that

Trω(T ) = lim
s→1+

(s− 1)ζT−1(s) (35)

So substituting T = D−2, yields the result that

Trω(D−2) = lim
s→1+

(s− 1)ζD2(s) (36)
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