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'd

« Make A a noncommutative algebra

e Can we find noncommutative ‘manifolds’

* |f so what are some of their properties?
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* Take A to be: M, (C)
« Take H tobe:V ® M, (C)

{Wi,”yj} — 277’53 77:diag(\l,...,lj,\—l,...,—lj) V = (Cp-l-q

Then just need the Dirac operator

A general expression was written down by J Barrett [1]:

Dv®m) =Y a'v® [L;,m]+ 7'~7f0®{H,m}
2.l Z ~ 1

anti-Hermitian Herm|t|an
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1

* Look for logarithmic divergence by rescaling the zeta by log({p2(0))

* Compare rescaled zetas for increasing matrix size fuzzy spaces.

* Find ‘stable point’

(pz (s) _ (pz (8)
log(¢pz(0))  log(Cp2 (0))
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Case study: Surfaces i
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at(D?) = Res, s (T(s)Cp(s))

Vol(M) = 2w Ress—1(I'(s)(p2(s))
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Vol(M) = 2w Ress—1(I'(s)(p2(s))

How to calculate this when there is no pole?

GQuess: Read off value of: oz (1
— log(¢p2 (0))
Sphere:

" 1ogg<12§<)o>>
10 21735
100 2.09315
200 2.08172
300 2.07624
455 2.07133
1000 2.06359
o0 2
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Requires analytic continuation

Everything is analytic to begin with.

So what is analytic continuation in the fuzzy world?
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* Used spectral zeta to find dimension of fuzzy geometries
* Used spectral zeta to find ‘volume’ of fuzzy spheres

Limitations

 Need a sequence of fuzzy spaces
* Can be computationally heavy

Todo

* Construct more fuzzy spaces to test on

* (Gain access to lower poles

* Figure out ‘analytic continuation’

* What about distinguishing isospectral spaces?




Thank you for listening!

Any questions?




